
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2007

Advanced detection and separation methods:
developments in surface-enhanced Raman
scattering readout immunoassays and
electrochemically modulated liquid
chromatography
Betsy Jean Yakes
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Analytical Chemistry Commons, and the Biochemistry Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Yakes, Betsy Jean, "Advanced detection and separation methods: developments in surface-enhanced Raman scattering readout
immunoassays and electrochemically modulated liquid chromatography" (2007). Retrospective Theses and Dissertations. 15992.
https://lib.dr.iastate.edu/rtd/15992

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15992&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15992&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15992&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15992&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15992&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15992&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/132?utm_source=lib.dr.iastate.edu%2Frtd%2F15992&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=lib.dr.iastate.edu%2Frtd%2F15992&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/15992?utm_source=lib.dr.iastate.edu%2Frtd%2F15992&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Advanced detection and separation methods: Developments in surface-enhanced 
Raman scattering readout immunoassays and electrochemically modulated liquid 

chromatography  
 
 

by 
 
 

Betsy Jean Yakes 
 
 
 
 

A dissertation submitted to the graduate faculty  
 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 
 
 
 
 

Major: Analytical Chemistry (Chemical Instrumentation) 
 

Program of Study Committee: 
Marc D. Porter, Major Professor 

Patricia A. Thiel 
Emily Smith 

Andreja Bakac 
Surya Mallapragada 

 
 
 
 
 
 
 
 

Iowa State University 
 

Ames, Iowa 
 

2007 
 

Copyright © Betsy Jean Yakes, 2007. All rights reserved.



www.manaraa.com

UMI Number: 3274821

3274821
2007

Copyright 2007  by
Yakes, Betsy Jean

UMI Microform
Copyright

All rights reserved. This microform edition is protected against 
    unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road

P.O. Box 1346
     Ann Arbor, MI 48106-1346 

All rights reserved.

 by ProQuest Information and Learning Company. 



www.manaraa.com

 
ii 

TABLE OF CONTENTS 
 

ACKNOWLEDGEMENTS iv 
 
ABSTRACT vii 
 
CHAPTER 1: General Introduction 1 

DISSERTATION OVERVIEW 1 
LITERATURE REVIEW 2 
CONCLUSIONS 24 
REFERENCES 24 

 
CHAPTER 2: Detection of Mycobacterium avium subsp. paratuberculosis using Surface-
Enhanced Raman Scattering: Part I – Sonicate Immunoassay 30 

ABSTRACT 30 
INTRODUCTION 31 
MATERIALS AND METHODS 35 
RESULTS 39 
DISCUSSION 43 
ACKNOWLEDGMENTS 45 
REFERENCES 46 
FIGURES 52 

 
CHAPTER 3: Detection of Mycobacterium avium subsp. paratuberculosis using Surface-
Enhanced Raman Scattering: Part II – Whole Cell Immunoassay and Protein Shedding 58 

ABSTRACT 58 
INTRODUCTION 59 
MATERIALS AND METHODS 61 
RESULTS 65 
DISCUSSION 70 
ACKNOWLEDGMENTS 72 
REFERENCES 73 
FIGURES 78 

 
CHAPTER 4: Resonant Raman Labels for Improved Surface-Enhanced Raman Scattering 
Heterogeneous Immunoassays 85 

ABSTRACT 85 
INTRODUCTION 86 
EXPERIMENTAL 89 
RESULTS AND DISCUSSION 95 
CONCLUSIONS 101 
ACKNOWLEDGEMENTS 102 
REFERENCES 102 
FIGURES 104 



www.manaraa.com

 
iii 

CHAPTER 5: Electrochemically modulated liquid chromatographic separation of triazines 
and the effect of pH on their retention 115 

ABSTRACT 115 
INTRODUCTION 116 
EXPERIMENTAL 118 
RESULTS AND DISCUSSION 121 
CONCLUSIONS 129 
ACKNOWLEDGEMENTS 129 
REFERENCES 129 
FIGURES 132 

 
CHAPTER 6: Conclusions 141 
 
APPENDIX. Monolithic Carbon as a Novel Stationary Phase for Electrochemically 
Modulated Liquid Chromatography 144 

INTRODUCTION 144 
GLASSY CARBON PARTICULATE ROD 145 
REDESIGNED EMLC COLUMN 146 
MONOLITHIC CARBON 149 
FUTURE DIRECTIONS 151 
REFERENCES 152 

 



www.manaraa.com

 
iv 

ACKNOWLEDGEMENTS 

When I graduated high school, I got the opportunity to encourage my classmates to 

“thank those who have helped you get here today.” I am blessed to get to do so in my own 

life once again. 

To list all the teachers and mentors who have influenced my life would take more 

space than I have here. Most specifically, thank you to Paul Roth, Carolyn Mottley, Kyle 

Strode, and Randy Robinson. I think I first fell in love with chemistry when Mr. Roth stated 

“Isn’t that amazing!” during an in class color change demo and stayed in the field due to the 

exciting lectures, labs, and personal discussions with Dr. Mottley, Dr. Strode, and Dr. 

Robinson. To all of my teachers, your enthusiasm in chemistry and guidance has allowed me 

to become your colleague, and for that I am forever grateful. 

Many thanks to the “Porterites.” Marc, thank you for allowing me the freedom to 

pursue my research interests and guidance to help me become the scientist I am today. Bob 

Lipert, without your knowledge and patience much of this research would have stalled out 

long ago, the journey would have been far more difficult, and I would confuse singular and 

plural Latin forms more often. Thank you also to John Bannantine at the NADC for all of his 

insights on the MAP project and general encouragement during my graduate studies. Heather 

Bullen, thank you for always reminding me “It’s a party!” Thank you, Becky, for always 

knowing what form I needed to fill out and exactly what I needed to hear to feel better – 

you’re the best! My Arizona girls Jill and Karen, I can’t imagine having done this without! 

Thank you to Jeremy Driskell who taught me everything I know about Raman (but any 

mistakes are truly my own). Thank you also to Jen and Mike Granger for all the words of 



www.manaraa.com

 
v 

wisdom. My coffee and El Azteca cohorts, John and Rachel, thanks for the science talk and 

all the laughs!  

Also, to the Physics kids (Shelbi, Raegan, Derek, Warren, Katie, and Larry). Thanks 

for all the fun times and distracting me from work. Looking forward to seeing you all soon 

(and might I add, Chemistry rocks!). 

And of course, my family, how I ever got so lucky to have you all, I will never know. 

Thank you to my father, who probably has written a thesis in post notes over the last nine 

years. Looking forward to many more! I am so grateful to my mother who has always told 

me I could do it and has been a source of never ending support. Thank you for never 

doubting me and never letting me give up. To Melissa, Eric, and CJ – thank you for the 

“wine and whine” sessions and fashion advice. To Grandma and Grandpa Olsen, thank you 

for being excited about my research and the words of encouragement. To those who are no 

longer here to share this with me – Grandma Poskie and Lois – Thank you for all the times 

we shared and always believing in me. 

My extended family – Ramona, Jim, Erin, Kellie, and Keenan – I am so thankful to 

be in your family, many thanks for all your support (and warm California vacations)!  My 

friend Kathy, I am so glad that I took your tricycle back in preschool because then you were 

here with me through this journey from the start. My girl Emily, I am definitely ready for us 

to share a little of that “retail therapy” – thanks for being such a strong woman and 

supporting me being a nerd!  

I dedicate this thesis to E. M. Pospychala, my grandfather and self proclaimed “#1 

fan.” Without your weekly letters in my early undergraduate years telling me you were with 



www.manaraa.com

 
vi 

me “win, lose, or draw”; your support through this graduate experience; and fun money, I 

would not be here today. Thank you. 

And last, but never least, to my husband Michael. Thank you for always believing in 

me even when I didn’t believe in myself. Your encouragement and love is beyond what I 

could ever expect. Thank you for all the times you listened to me discuss my science, the 

many meals you brought to lab, so I could work late, and the support during my transition to 

ASU. I am so excited to start on the next journey with you! 

This work was performed at Ames Laboratory under Contract No. DE-AC02-

07CH11358 with the U.S. Department of Energy. 

Finally, to all those who have helped me get here and to quote my grandfather 

(quoting Garrison Keillor), "Be well, do good work, and keep in touch." 



www.manaraa.com

 
vii 

ABSTRACT 

This dissertation explores the use of novel detection methods for biological and 

chemical components commonly found in the environment. It encompasses two techniques: 

surface-enhanced Raman scattering (SERS) and electrochemically modulated liquid 

chromatography (EMLC). 

Immunoassays using SERS as a readout tool have been developed in this laboratory 

and have shown low levels of detection (i.e., pico- to femtomolar and single binding event 

detection) for disease and biowarfare agents. This thesis seeks to further the performance of 

this platform for bacteria detection and explore strategies to increase the SERS response. 

Specifically, the first section of this dissertation focuses on the detection of a common, 

economically devastating, bovine bacterium. By the judicious design of the assay platform, a 

selective assay for the bacteria was developed, and low levels of detection (~500 bacilli/mL) 

were achieved. Further examination of these results led to the exciting discovery of an 

amplification phenomenon based on protein shedding from the surface of the bacteria. The 

last portion of the SERS readout immunoassay research focuses on fundamental studies 

employing resonant, dye molecules to create enhanced SERS signals. Full immunoassay 

results for four dyes, when compared with our standard, non-resonant reporter, yielded SERS 

signals ~300 times more intense. Implications of signal enhancement with respect to limits of 

detection are elucidated, and future work towards decreasing nonspecific binding briefly 

introduced. 

The second part of this dissertation introduces research development in EMLC, 

specifically the use of mobile phase pH regulation and incorporation of novel stationary 

phases. By expanding upon current EMLC techniques, novel separations of weakly 



www.manaraa.com

 
viii 

basic/acidic compounds were achieved. These studies revealed the potential power of EMLC 

with mobile phase pH control to improve resolution while simultaneously reducing elution 

time for seven compounds. These results, which are in contrary to other reversed phase LC 

systems, are based on the ability to “pull apart” a chromatogram. In addition, the capability to 

perform a titration with EMLC, and thus determine the pKa of a compound, is discussed in 

context of acid-base equilibria. This dissertation also introduces work underway for a 

redesigned column for testing monolithic carbon materials as an EMLC stationary phase. 

Finally, insights gained during this project are used to formulate further column redesign and 

in-situ monolith formation for improved EMLC separations. 
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CHAPTER 1: General Introduction 

DISSERTATION OVERVIEW 

This dissertation represents work aimed at advancing two areas of analytical 

chemistry. Detection of chemical and biological pathogens that cause illness and affect the 

environment is of the utmost importance not only for economic purposes but also for the 

improvement of life. This dissertation is organized into six sections. Chapter 1 starts with a 

discussion of detection techniques for bacteria, highlighting the advantages and 

disadvantages to each system. In addition, this literature review will introduce surface-

enhanced Raman scattering (SERS) with emphasis on signal origin and instrumentation. Four 

original research chapters, each presented as a separate manuscript, and one appendix follow. 

Chapters 2 through 4 develop techniques for improving antigen detection, while Chapter 5 

and the Appendix discuss investigations into electrochemically modulated liquid 

chromatography (EMLC) with respect to mobile phase and stationary phase composition.  

As improvements in immunoassays and their detection methods have been pivotal in 

the advancement of bioanalytical science, the first three research chapters focus on important 

developments for a heterogeneous, two-site immunoassay.1-3 In Chapter 2 and 3, this 

immunoassay is applied to the detection of Mycobacterium avium subspecies 

paratuberculosis (MAP). Current techniques to identify this bacteria lack the sensitivity, 

selectivity, or speed necessary for reliable detection. Specifically, the immunoassay 

optimization and results for MAP lysate are introduced in Chapter 2 through application of a 

recently developed antibody specific to a MAP surface protein.4-6 Next, the assay system is 

further characterized, and a possible internal amplification mechanism for the heat-killed, 

whole cell bacteria is presented in Chapter 3. In Chapter 4, methods are developed for 
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incorporating resonance Raman molecules into extrinsic Raman labels (ERLs). The stable 

colloids are then used in a heterogeneous, two-site immunoassay for mouse IgG. Comparison 

of resonant versus nonresonant reporter molecules is made with enhancement factors, and 

limits of detection are evaluated. 

Chapter 5 and the Appendix have introductions appropriate to their EMLC studies. 

As such, EMLC background will not be part of this literature review. Chapter 5 extends the 

versatility of EMLC by evaluating how mobile phase conditions, specifically pH, affect 

retention mechanisms and techniques developed are then applied to triazines, a class of 

harmful herbicides. After the Conclusions and Prospects section, the Appendix offers a brief 

introduction to monolithic stationary phases by focusing on their potential and challenges 

associated with their integration into a standard EMLC column. 

 

LITERATURE REVIEW 

Detection of Bacteria 

The detection of pathogenic bacteria is crucial for identification of diseases in the 

healthcare, defense, food, and environmental arenas. In addition, by rapidly and correctly 

distinguishing the bacteria, appropriate measures to limit the spread of disease and actions to 

counteract infection can be taken. Analytical methods to detect, identify, and quantitate 

bacteria must be able to not only rapidly analyze a sample, but also do so selectively and 

sensitively. Moreover, because of the vast number of bacterial pathogens and varied areas 

where evaluation is needed, the techniques must be universally transferable to multiple 

bacteria types while also being cost effective. Finally, a low maintenance, continuous 

operation, easy-to-use system would be desirable. 
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The food industry accounts for the largest area of research in pathogen detection 

followed by the clinical, water, environmental, and defense fields.7 In addition, the 

complexity of food matrices can complicate pathogen detection.8 Many food borne illness 

events have made headlines in the popular press, with recent U.S. bacterial threats including 

Escherichia coli O157:H7 contamination in spinach (205 confirmed illnesses, three deaths)9 

and Salmonella tainted peanut butter (329 illnesses, 51 hospitalizations).10 

In addition to the above pathogens, the human respiratory disease tuberculosis was 

recently a target antigen for detection studies in our research group. This organism is a part 

of the Mycobacterium genus which includes bacteria that cause the human ailments of 

leprosy and ulcers.11, 12 In order to study this family of bacteria, a collaboration with the 

National Animal Disease Center (Ames, Iowa) was launched that employed Mycobacterium 

avium subsp. paratuberculosis (MAP). The pathogencity of MAP, a bacteria that is detected 

by a SERS-readout immunoassay in Chapter 2 and 3, has recently been reviewed.13 Most 

importantly, this bacterium is responsible for Johne’s disease which causes chronic enteritis 

of the intestines that leads to malabsorption of nutrients and death in cattle.  

MAP can reside in domestic ruminants (e.g., cattle, sheep,14, 15 and goats16, 17) and 

wildlife (e.g., deer,18-20 antelope,21, 22 bison,23 and rabbits24, 25). Serological surveys conducted 

by the National Animal Health Monitoring System in 1996 and 2002 indicated that 20-40% 

of the U.S. cattle herds are afflicted at some level by MAP.26, 27 In addition, it has been 

estimated that this disease imparts a economic loss of $220 million annually to the U.S. dairy 

industry,27 with an overall impact of up to $1.5 billion to the U.S. cattle industry.28 

Furthermore, this disease is characterized by intermittent, low levels of bacterial shedding 

that can slowly contaminate the surrounding environment and lead to the spread of infection. 
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However, existing methods cannot reliably detect MAP at low levels. Many of the current 

detection techniques for this and other bacteria (e.g., E. coli, Salmonella) are introduced 

below with emphasis placed on the benefits and drawbacks of each method. 

 

Traditional Methods 

Clinical/Symptomatic Diagnosis. A hallmark of bacteria infection in humans, 

animals, or plants is symptoms that are associated with the particular disease. At the forefront 

of disease detection then is clinical diagnosis through visual inspection or simple medical 

tests. For example, in tuberculosis, a respiratory disease caused by Mycobacterium 

tuberculosis, a patient will experience chest pain, coughing, weight loss, and fever.29 A 

medical professional will perform a routine examination to listen for fluid buildup in the 

lungs and obtain x-rays of the chest to look for abnormal cavities, lesions, nodules, or fibrotic 

scars that signify areas where bacteria have digested the tissue.30 In the case of MAP 

infection, the animal will have rapid weight loss and chronic diarrhea during late stages of 

infection.31 Clearly, symptoms in both diseases could be indicative of a variety of infections 

and many simple clinical procedures fall far short in yielding an exact diagnosis. Laboratory 

tests, like those introduced below, are common place and attempt to determine the bacteria 

type and strain in order to correctly identify the disease and implement treatment. 

Smear Examination. Perhaps the simplest method of detection involves smearing a 

specimen (e.g., sputum, urine, pus, pleural, cerebrospinal or biopsy) onto a glass slide.32 The 

slide can then be stained with an appropriate agent (e.g., auramine-rhodamine), viewed under 

a light microscope, and the number of bacteria enumerated (Figure 1).30 While these tests are 

generally rapid and inexpensive, the results are based on characteristics shared by multiple 
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bacteria (e.g., acid-fast bacilli staining, size, and shape) and are 

therefore only confirmation of a genus of bacteria. In addition 

bacteria levels must be high enough to be enumerated, with 104 

bacilli/mL necessary, for example, with the Ziehl-Neelsen 

method when applied to gram-positive rods of Mycobacteria.30 

For this reason, improvements in the identification of bacterium 

type are needed. 

Culture and Colony Counting. Culturing a bacterial sample is the oldest and most 

popular detection technique. This standard method relies on growing a bacteria on a selective 

media, liquid or solid, that can either inhibit growth of non-targeted strains or that changes 

physical appearance (color or degradation) of the substrate due to growth of the specified 

colony.33 Observation of colonies (e.g., size, shape, color, surface appearance, and odor) 

followed by enumeration (Figure 2) or optical density (OD) determination are used to 

classify bacteria type and evaluate the concentration. However, many of the criteria are 

subjective which can lead to errors in strain identification.34 

This technique, while well-established and sensitive, also 

suffers from long incubation (a few days to multiple weeks), 

with MAP requiring 12-16 wks.35 In addition, colonies may 

grow on top of each other thus complicating identification and 

enumeration. If two or more bacilli produce indistinguishable 

colonies, gross underestimation of the actual concentration 

occurs. As such, results are designated as colony forming units 

(CFU) per mL instead of bacilli/mL.32 

 
Figure 1: Mycobacterium 
tuberculosis (~3 μm rods) 
stained red in a sputum 
sample (from CDC, Public 
Health Image Library).  

Figure 2: Colonies of 
Mycobacterium tuberculosis 
(from CDC, Public Health 
Image Library). 



www.manaraa.com

 
6 

Advances that improve sensitivity and decrease incubation time include the use of 

radiometric labeling. For example, the BACTEC Radiometric System detects 14CO2 that is 

given off as the bacteria grow on a radiolabeled, palmitic acid substrate.36 While this method 

improves upon colony counting and is more rapid, the use of radioactive materials and high 

cost limit widespread use.35 Recent advances towards the development of more specific, 

strain based tests that are sensitive and rapid are now beginning to displace these methods. 

 

Recent Advances 

Polymerase Chain Reaction (PCR). PCR was developed in 1985, and Kary Mullis 

received the 1993 Nobel prize for this invention.37 Since then, this technique has been widely 

applied to detection of bacteria.38 PCR is less time consuming than culturing, and when not 

including enrichment steps, takes only 5 to 24 h to produce results.7 In this method, DNA is 

first extracted from the source and purified. The isolated DNA is denatured by heat and then 

amplified at a cooler temperature by 

specific primers and polymerization 

enzymes (Figure 3). These heating and 

cooling cycles are repeated several times, 

creating an exponential amplification of the 

original strand.39 This material is then 

quantified, for example, through the use of 

gel electrophoresis, which in many cases is 

a detection technique on its own.40 In gel 

electrophoresis, the charged fragments are subjected to an electrical filed that forces them to 

Thermally denature DNA
Anneal Primer (at 3’ end)

Extend Primers

Cycle 1

Repeat (Denature DNA then 
anneal and extend primers)

Cycle 2

Thermally denature DNA
Anneal Primer (at 3’ end)

Extend Primers

Cycle 1

Repeat (Denature DNA then 
anneal and extend primers)

Cycle 2

Figure 3: Basic PCR procedure, usually performed 
in a thermocycler. 
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move through the gel.34 Different masses migrate at different rates, with smaller proteins 

moving faster through the pores of the gel.41 This separation is detected by staining the 

fragments and comparing the bands to size standards. 

Variations in this basic principle include real-time PCR, multiplexed PCR, and 

reverse transcriptase PCR (RT-PCR). In real-time PCR, the sample is interrogated by 

fluorescence measurements of dye-tagged DNA. These measurements are used to follow the 

progression of the amplification process since the signal intensity is proportional to the 

amount of product.42, 43 RT-PCR has the ability to detect viable bacteria7 and can be used 

without pre-enrichment steps,44 although bacteria concentrations may need to be quite high 

(107 CFU/mL).45 In multiplexed PCR, several DNA genes, corresponding to different 

bacteria, are amplified at the same time thus allowing for simultaneous detection of several 

pathogens.46, 47 All PCR techniques have limitations48, 49 and can lack specificity if the probe 

hybridizes with DNA from similar bacteria50 or other proteins in a complex matrix. However, 

PCR can be strain specific and sensitive. 

Gamma Interferon (INF-γ). In this recently developed procedure, whole blood is 

tested for an immunological response to a specific antigen. A blood sample is mixed with the 

antigen and incubated for a specified period of time, usually 24 h. If the person or animal is 

infected, T-cells in the blood will recognize the antigen and release INF-γ in response (Figure 

4), which is measured by ELISA.51 This test is becoming more integrated into medical 

laboratories, with a commercially available kit for tuberculosis serving as a recent example.52 

However, INF- γ tests suffer from false positives because of cross reactivity with similar 

bacteria.53 Furthermore, Stabel and coworkers found that only 50 to 75% of cows in bovine 

herds that had low levels of MAP infection were identified when using an ELISA-based test 
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for INF-γ.54 Other studies have found this method to be unreliable for people who have been 

vaccinated against the disease, young children55 and calves under one year.56, 57 

 
Other Methods. Common serological tests, including complement-fixation (CF) and 

agar gel immunodiffusion (AGID), have been commonplace in bacterial testing but are 

falling out of favor due to their lack of sensitivity.58-60 Faster, more sensitive serological 

methods have been developed, including enzyme immunoassays that will be discussed in 

more detail later. In addition, flow cytometry has become a well accepted method for 

counting bacteria as well as determining the cell viability.61, 62 By using a flow system in 

which bacteria are individually detected by a sensor, sensitive and rapid concentration 

measurements can be obtained. Cells are identified via fluorescent tags which can be based 

on a fluorophore-labeled antibody or viability stains.63, 64 Viability stains (e.g., 

carboxyfluorescein diacetate for green fluorescence of viable cells and propidium iodide for 

red fluorescence of dead cells) lend an added dimension to classifying a sample. Other 

analytical instrumentation including chromatography and mass spectrometry, operating in 

solo or in tandem, are emerging as powerful techniques for separation and strain 

identification,65 but hardware size and cost presently limit the widespread use of these 

techniques. Modern immunological methods, most specifically biosensors, are emerging as 

Antigen Presenting 
Cell (APC)

+
Antigen 

(Ag)

+

Antigen 
Specific T-cell

APC 
processes Ag

APC presents  
Ag to T-cell

T-cell produces 
IFN-γ

Antigen Presenting 
Cell (APC)

+
Antigen 

(Ag)

+

Antigen 
Specific T-cell

APC 
processes Ag

APC presents  
Ag to T-cell

T-cell produces 
IFN-γ

 
Figure 4: Premise of QuantiFERON® which tests for IFN-γ response to an antigen (adapted from 
Cellestis). 
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competitive techniques through incorporation biorecognition elements for selectivity 

combined with the use of sensitive readout methods as discussed below. 

 

Biosensors for Bacteria Detection 

A newer area of bacteria detection utilizes biosensors that rely on antibodies or DNA 

probes to discriminate against interferences and cross reactivity found in the previous 

methods. The sensors are formed using well characterized immunoassay technology and then 

transduction is carried out through radiometric, optical, electrochemical, or other methods. 

The immunoassay platform will be briefly introduced, and then some of the most common 

readout techniques will be presented in this section. 

 Immunoassay Formats. Immunoassays represent a diverse area of biotechnology and 

have achieved widespread use due to the range of substances that are detected, the specificity 

that is enabled by the platform, and the sensitivity that is achieved with common detection 

methods.66 Immunoassays were developed in the late 1950’s by Berson and Yalow for the 

radiometric detection of insulin67 and then in the early 1960’s by Ekins for measuring 

thyroxine levels.68 Many assay conformations and biorecognition elements are currently in 

use, but the general techniques consist of a competitive or noncompetitive format using an 

enzyme, antibody, or nucleic acid recognition element. 

Two of the most common assays are shown in Figure 5. In the competitive 

immunoassay (Figure 5a), the analyte is mixed with labeled antigen, and the mixture is 

allowed to incubate with a capture substrate. The labeled antigen competes with the analyte 

for a limited number of binding sites, and after rinsing excess reagent, the signal for the 

labeled antigen is determined. Since the signal is inversely proportional to analyte 
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concentration, low analyte concentration yields a large signal. As a consequence, the 

detection limit is dominated by the affinity constant of the antibody with respect to the 

antigen and errors in measurement.69 

 
In the noncompetitive immunoassay (Figure 5b), an excess of binding sites are 

available to potentially capture all available analyte. The antigen-antibody complex is then 

incubated with a secondary antibody containing the label. This sandwich, or two-site, 

immunoassay is read out with the signal directly related to analyte concentration. In this case, 

the detection limit is governed by the affinity constant of the antibody, experimental error, 

and signal intensity of the label. In theory, using a “brighter” label should lead to a more 

sensitive assay, with theoretical detection limits two orders of magnitude better than 

competitive immunoassays.69 In practice, limits of detection can be hindered by the 

nonspecific interactions of the labeled antibody to the surface when no antigen is present. As 

expected, research continues to focus on approaches to minimize, and ideally eliminate, 

nonspecific binding through the use of surfactants, small proteins, blocking agents, or special 

surface coatings. 

+ +
Incubate

Rinse

+
Incubate

Rinse

Incubate

Rinse
+

(a)

(b)

Antibody

Labeled, Secondary 
Antibody

Antigen, Analyte

Labeled Antigen
+ +

Incubate

Rinse

Incubate

Rinse

+
Incubate

Rinse

Incubate

Rinse

Incubate

Rinse

Incubate

Rinse
+

(a)

(b)

Antibody

Labeled, Secondary 
Antibody

Antigen, Analyte

Labeled Antigen

 
Figure 5: (a) Competitive and (b) Noncompetitive, two-site immunoassay formats. 
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After optimization, the assay is carried out, and the antigen is quantified. In either the 

competitive or noncompetitive immunoassay, the scope of labels for readout is vast. The 

most common techniques are tied to enzymatic reactions, radiotracers, chromophores, or 

redox couples, and each will be explored further below. 

Radiotracer Detection. Radioisotope detection is usually based on the isotopic 

labeling of an antibody. Commonly used radiotracers include 14C, 3H, 32P, 35S, and 125I. Once 

labeled, the decay of the isotope is monitored and quantitated. While γ-rays (i.e., 125I) or β-

particles (i.e., 3H or 14C) can be employed, γ-emitters are more readily used because of their 

high penetrating power.70 This method is not affected by environmental conditions or 

background from biological samples,69 and the read out requires only a simple counter. 

However, radioisotopes are hazardous and have high disposal costs which, coupled with the 

performance of emerging techniques, have lead to a decline in usage. 

Optical Detection Methods. There are many options for optical detection with 

enzymatic-generated chromophores and luminescence being the most common. Advances in 

surface plasmon resonance (SPR), quantum dots (QDs), and surface-enhance Raman 

scattering (SERS) are leading to the incorporation of these methods into immunoassay 

readout as well. Since SERS detection is used throughout this dissertation, it will be explored 

in a separate section. 

In enzyme immunoassays, one of the most used approaches for pathogen detection is 

enzyme-linked immunosorbent assay (ELISA).71, 72 In a typical sandwich ELISA, antibodies 

are immobilized on a platform (usually a microtitre plate), antigen is extracted from solution, 

and an enzyme-labeled antibody is then specifically bound to the captured antigen. When the 

system is exposed to the enzymatic substrate, a colored product is produced that has an 
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intensity proportional to the amount of antigen present.73 Although ELISA may only takes a 

few hours to complete, it can suffer from poor sensitivity74-77 which can be problematic 

during early stages of infection.78 In addition, factors such as the pH, ionic strength, and 

temperature of the solution69 affect assay performance and limit universal detection. 

Luminescent methods have come to the forefront of quantification of analytes in 

immunoassays. Improvement in sensitivity and safety are achieved by using probes that 

absorb light energy at shorter wavelengths and emit at longer wavelengths (fluorescence), 

emit light during a chemical oxidation reaction (chemiluminescence), or naturally produce 

light (bioluminescence). These quantitative methods can achieve detection limits on the order 

of 10-12 M.79 Nonetheless, the instrumentation is more complex than radioisotope detection 

with the need for a light source, filters or monochromators, lenses, and detectors. While these 

readout methods are popular, there are limitations to their utility. In general, the 

chromophores have broad emission peaks that complicate their use in multiplexed scenarios. 

In addition, biological samples have a fluorescence background and scatter incident radiation 

thus interfering with the analytical signal. Furthermore, quenching of fluorescence and 

photobleaching are commonplace.69 

A new area of optical detection employs SPR sensors. When incident light is at a 

specific wavelength and angle, an evanescent electromagnetic field is produced at the surface 

of a thin metal. By scanning the incident angle and monitoring the reflected light intensity, a 

minimum reflectivity occurs when the light is coupled to the surface plasmon oscillation.80 

This condition is sensitive to the dielectric properties of the surface which are affected by a 

surface immobilized species. Shown in Figure 6 is a simplified schematic of a common SPR 

sensor configuration. In this case, a gold surface/prism interface contains adsorbed antibodies 
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that can extract antigen from flowing solution.81 The 

binding of antigen to the sensor chip results in a 

change in the refractive index of the metal/dielectric 

interface which is detected as a shift in the resonance 

angle.82 This optical method is then label-free, 

yielding a change in signal upon antigen capture. In 

addition to its use in label-less, real time analysis, 

SPR sensors have limits of detection ranging from ppb and nanomolar levels to 104 

organisms/mL.80 Disadvantages arise from refractive index changes that are not due to the 

desired complex formation and can include false-positives due to nonspecific binding, 

solution inhomogeneity, or temperature fluctuation. Furthermore, as the sensitivity is based 

on changes in refractive index at the sensor, small molecules pose a greater challenge.73 

Another recent advancement in detection stems from the use of quantum dots. QDs 

are composed of semiconductor nanocrystals, with the CdSe-ZnS core-shell being very 

popular, that are used as the label in immunoassays.83 These photostable nanoparticles are 

highly luminescent, and their emission maximum to lower energies as the size increases.84 In 

addition, these particles have bands that are both narrower and more intense than common 

molecular fluorophores. In addition, the size of the particles can be tuned for multiplexing. 

When incorporated into an assay, detection limits rival many of the available techniques, 

with 104 CFU/mL levels reached for the concurrent readout of E. coli and Salmonella in only 

2 hours.85 The biggest drawback to this technology has been the lack of biocompatible 

semiconductor surfaces,86 though advances in this area to coat and stabilize the QDs87 are 

ongoing. 
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Figure 6: Basic SPR, flow channel 
sensor that detects antibody-antigen 
binding by measuring changes in the 
reflected light. 
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Electrochemical Detection. Two general categories of electrochemical biosensors 

exist. The first is based on biocatalysis, while the second method is focused on affinity 

sensors.88 In the former method, an enzyme is coupled to an electrode through polymer 

entrapment, surface adsorption, covalent binding, electrostatics, or biospecific interactions. 

When an antigen is present that reacts with an enzyme-labeled antibody, an electrochemical 

response is detected. This technique is generally limited by the ability to create a stable layer 

of the enzyme. In the case of affinity biosensors, the immobilization of antigen and antibody 

follow the general procedures used in immunoassays. The detection is usually performed by 

interrogating a sample that has either an electrochemically tagged antigen (competitive) or 

antibody (noncompetitive).88 

After performing an assay, the ensuing change in current, potential, or impedance can 

be measured.73 In amperometric methods, the antigen concentration is linearly related to 

current, but this trend is an indirect measurement of an enzymatic reaction. With 

potentiometeric transducers, a logarithmic concentration response is often obtained, but this 

easy-to-use system can suffer from electrode fouling and low sensitivity. Impedimetric 

techniques can be used for real-time, label-free capacitance measurements due to changes in 

the thickness and dielectric properties of the electrode. These methods benefit from rapid 

readout of antigens while using inexpensive instrumentation. In addition, it is sometimes 

possible to work in turbid environments or repeat measurements,73 but these benefits are only 

possible when electrode fouling does not occur in the case of the former, and the 

sample/redox chemistry is marked by reversibility in the latter situation. Furthermore, 

electrochemical methods can be limited by low sensitivity due to nonspecific interactions and 

interferences from other solution components.7 
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Other Developments. The application of other technologies to the advancement of 

pathogen detection has been vast. In addition to those methods outlined above, force, 

magnetic, and mass detection methods have been researched. Atomic force microscopy and 

functionalized microcantilevers can be used to evaluate intermolecular interactions and 

immunosensors.89 Also, techniques that rely on scanning probe microscopy can be used to 

visually interrogate a sample substrate and enumerate the number of antigens bound.90 Giant 

magnetoresistance technology, commonly found in computer hardrives, has been applied to 

detection of magnetically labeled antigens.91 Furthermore, as piezoelectric devices advance, 

the direct detection of bacteria due to specific binding to a platform and then measuring the 

frequency change (based on mass accumulation) is being explored.92 

Many of the techniques currently being developed involve combining multiple 

methods or implementing advanced sample preparation prior to detection. With respect to the 

former, research is expanding upon using PCR to first copy the DNA present in a sample and 

then applying this amplified solution in an assay with common readout technologies to 

further improve limits of detection. For the latter, one area of growing research is the 

application of immunomagnetic beads for separation and concentration of antigens.7 Another 

technique utilizes antibody-coated paramagnetic beads to extract the analyte from solution 

prior to detection.63 

 

Surface-enhanced Raman Scattering (SERS) 

Raman Background. When particles have dimensions comparable to or smaller than 

an incident electromagnetic field and are randomly distributed in a medium of differing 

refractive index light scattering can occur. An induced secondary emission takes place from a 
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subtle distortion when the positively charged nuclei of a molecule are attracted toward the 

negative pole of the incident radiation, and the electrons are attracted toward the positive 

pole.93 This charge separation produces an induced dipole in the particle and secondary, 

elastic radiation. Another type of light scattering was first observed by C.V. Raman in 

1928.94, 95 Named Raman scattering on his behalf, this inelastic scattering is characterized by 

frequency shifts that are independent of the scattering angle and are based on vibrational or 

rotational transitions in a molecule. 

The photon origin of this process is illustrated in Figure 7. When an incident photon 

is adsorbed by a molecule into a virtual state, the excited electron can either relax by 

scattering elastically (Rayleigh) or inelastically (Raman). Raman scattering is much weaker 

(10-6 of the incident radiation intensity) than the Rayleigh scattering and has a frequency of 

the original photon shifted with respect to the vibrational frequency of the 

molecule/functional group. At room temperature, the Stokes lines are more intense than the 

anti-stokes lines because the ground-state population is greater than that of the excited state.93 

It is therefore more customary to measure the Stokes side of the spectrum. 

The closer the virtual state is to a real energy level, the higher the adsorption 

probability. When the virtual state approaches the lowest excited electronic state, pre-

resonance is achieved. When the frequency of an incident photon lies within the contour of 

an electronic adsorption band, resonant Raman scattering is obtained. This higher adsorption 

probability leads to a larger number of scattered electrons and stronger Raman signals.96  
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Classic theory leads to an equation to define the Raman effect:  
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with μin the induced dipole of a polarizable molecule, α0 the polarizability at equilibrium, Em 

the amplitude of the incident wave, νex the excitation frequency, t the time, rm the maximum 

bond separation, and νυ the vibrational frequency.93 This expression leads to the three 

scattering events, with the first term representing the Rayleigh line and the second and third 

terms representing the anti-Stokes and Stokes lines, respectively. Equation 1 also shows that 

for a mode to be Raman active there must be a change in polarizability at the equilibrium 

bond distance. 

In addition, Raman intensities can be characterized by: 

( ) kTE
iexexR

ienE /
0

4 −∝Φ ννσ     (2) 

which defines the radiant power (ΦR) with respect to Raman scattering cross section σ(νex), 

source irradiance as E0, number density in the initial state as ni, and the Boltzmann factor as 

the exponential term. As the signal strength is based on irradiation intensity, laser sources 

have become popular. Also, with intensity proportional to the fourth power of the laser 
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Figure 7: Photon origin of Rayleigh and Raman scattering. 



www.manaraa.com

 
18 

frequency (νex), using short wavelength (i.e., UV) lasers can be advantageous. In addition, 

increasing the cross section leads to more intense signals, so methods to optimize this term 

have been considered. However, even when optimizing these conditions, Raman is a weak 

spectroscopic technique not applicable to detection limits demanded by immunoassays. The 

advent of SERS opened the door toward a more feasible use of Raman scattering for 

immunoassay detection. 

SERS Theory. In 1974, Fleishman and coworkers observed large Raman signals 

when pyridine was adsorbed at the surface of electrochemically roughened silver 

electrodes.97 However, they described the intensities as being due to a high number of 

adsorbates. Independently, Jeanmarie and Van Duyne98 and Albrecht and Creighton99 

proposed that the signals were not merely due to surface concentration and defined the 

phenomenon as SERS. This enhancement occurs when the incident radiation couples with 

the localized surface plasmon oscillation of a coinage metal surface (e.g., gold, silver, or 

copper) and is also dependent on the shape, asperity size, and dielectric properties of the 

material.100, 101 

Raman scattering can be described by the simple equation of: 

Eαμ =in      (3) 

where the induced dipole moment (μin) is proportional to the product of the polarizability (α) 

and the electric field (E). In order to obtain enhanced signals, the electric field and/or 

polarizability must be increased. These two aspects lead to the basis of SERS theoretical 

mechanisms which are a combination of chemical (increase in α of the molecule) and 

electromagnetic enhancements (increase in E at a surface) that experimentally yield 

enhancements of 106 to 108. The chemical enhancement mechanism is based on short ranged 
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effects and has a smaller contribution (100 times) to the overall enhancement. The two main 

models, adatom102 and charge-transfer,101, 103 are based on an increase in the polarizability of 

the molecule as a consequence of adsorption onto a metal surface.104 Many contributions to 

the electromagnetic theory extist,101, 105-107 and all are based on enhanced local electric fields 

experienced by the Raman active molecule and account for at least 105 enhancement. The 

image field model,108 surface field calculations,109 and distance dependence107 of d-12 have 

been recently reviewed by Driskell et. al.110 

In SERS, the signal intensity is a combination of effects represented by: 

( ) ( ) ( ) ( ) adsorbedscLLscSERS AAINI σνννν ××××= 22'    (4) 

with the number of adsorbates (N’) and the cross section (σadsorbed) leading to the chemical 

enhancement and the laser field enhancement A(νL) and the scattered field enhancement 

A(νsc) contributing to the electromagnetic effects.111 Based on equations 2 through 4, 

increasing the molecular parameters of polarizability or Raman scattering cross section 

would further increase the intensity of scattered radiation. This situation is the case with 

resonant molecules because there is a large change in molecular geometry during the 

electronic transition.93, 96 This method is the basis of Chapter 4 for achieving detection limits 

of 10-12 M. 

 

SERS Instrumentation 

Recent advances in Raman instrumentation are allowing for highly portable, low cost 

instruments that yield high sensitivity. Previously, Raman instrumentation required high 

power lasers, double and triple monochromators, specialized detectors, and vibration 

isolation at costs and sizes that complicated field deployment. With the advent of fiber optics, 
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diode lasers, improved optical filters, and advanced array detectors, Raman spectroscopy is 

now taking its place in modern analytical equipment with applicability to varied 

environments at affordable costs.112 

General Components. A Raman instrument consists of a laser source, a sample cell 

or platform, a wavelength selector, a radiation transducer, and a signal processor/readout 

system.93 The selection of the laser source is highly dependent on the sample, with helium-

neon (632.8 nm), argon ion (488.0, 514.5 nm), and krypton ion (530.9, 647.1 nm) lasers 

being among the most widely used. In addition, deep-UV lasers are coming into popularity 

for resonance measurements of biological samples,113 along with diode lasers for low-cost 

and versatility.114 As Raman theory states (Equation 2), the scattered intensity increases with 

respect to νex
4, so using lower wavelength lasers can yield higher signals. However, red laser 

light from a HeNe laser, for example, can be used to reduce fluorescence background from 

some samples. In addition, if a sample is photosensitive, the wavelength of the laser and 

power density in the irradiated sample area must be considered. As a rule, the best choice is a 

compromise between high signal intensity, low interference (fluorescence), and minimal 

photodegradation. 

As Raman spectroscopy is amenable to many sample states (solid, liquid, or gas), the 

cells and platforms are quite varied.93 For liquid samples, capillary tubes or cuvettes made of 

glass or quartz are generally used, with research into design flow-through systems underway 

in many groups.115-117 An advantage of Raman over other vibrational spectroscopy 

techniques (i.e., IR) is that water is a very weak Raman scatterer, so measurements can be 

made in aqueous solutions thus allowing in situ studies of biological samples. Solid powders 
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can be placed in standard capillary tubes, in potassium bromide pellets, or on a level 

platform. 

Wavelength selectors in Raman spectroscopy are employed to achieve a spectral 

resolution on the order of 5 cm-1 and to separate the weak Raman lines from the intense 

Rayleigh radiation. For this purpose, double or triple monochromators with ruled gratings 

have been incorporated into Raman instrumentation. Advances in holographic grating 

technology, as well as improvements in filters, have allowed simplification of Raman 

instrumentation and greater signal throughput. While traditional Raman instrumentation uses 

photomultiplier tubes or dc signal processing, diode arrays are becoming popular for their 

rapid and complete spectrum acquiring capabilities. Other advances in Raman 

instrumentation include the combing techniques such as Raman microprobes118 in which a 

spectrometer is combined with optical microscopy and Fourier transform Raman 

spectroscopy.119 

NanoRamanTMI. In our laboratory, the 

standard Raman instrument is a NanoRamanTMI. This 

instrument, manufactured by our collaborator 

Concurrent Analytical and shown in Figure 8, consists 

of no moving parts and is light weight (14 lbs, 16×8×8 

in. footprint), which allows integration into many 

laboratory and industrial settings.  

The light source is a 30 mW HeNe laser with a wavelength of 632.8 nm. To transmit 

the laser excitation and collect the scattered radiation from the sample, a bifurcated fiber 

optic cable (50 μm) is attached to a fiber-optic probe head (Figure 9). The laser light enters 
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A
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D

 
Figure 8: NanoRamanTMI 
configuration with the spectrometer 
(A), HeNe laser (B), fiber probe head 
(C), and sample platform (D) on an 
optical table with 1” between holes.
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the fiber and is collimated by a spherical lens. After traveling through a bandpass filter (OD 

4) that removes any spontaneous Raman or fluorescence from the fiber but passes the laser 

wavelength, the light is sent through a mirror and focused onto the sample via an objective. 

The objective can either be set for solution measurements (numerical aperture (NA) of 0.40 

and working distance (WD) of 6.24 mm) or solid substrate detection (NA of 0.68 and WD of 

3.1 mm). With the latter objective, a 25-μm diameter laser spot size is incident on the 

substrate with a power of ~3 mW. The scattered radiation that is then collected reflects off a 

gold-coated mirror and is sent through a longpass filter (OD 6) that rejects the Rayleigh and 

anti-Stokes scattering. The Stokes scattered radiation is then collimated and transferred to the 

spectrometer. 

The spectrograph is an f/2.0 Czerny-Turner imaging spectrometer as shown in Figure 

10. Light enters from the 50-μm diameter fiber and is collimated by the first achromat. The 

gold mirrors that follow are used to optimize the scattered radiation angle to the grating and 

allow the system to be compact. After passing through another achromat to remove 

chromatic aberration, the scattered radiation reaches the detector, a thermoelectrically cooled 

(Kodak 0401E) charge coupled device that has a spectral resolution of 6 to 8 cm-1 (2 cm-

1/pixel). This small chip (8.4×5.5 mm) has a low dark current (less than 10 pA/cm2 at 25°C) 

and has high signal collection. Spectral integration times can be varied with most acquisitions 

at one second, controlled by a PC with Windows Visual Basic program. 
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As a final consideration for this instrumentation, CCD performance was evaluated for 

linearity throughout the dynamic range of the detector. For the current system, the CCD 

becomes nonlinear when it reaches half-capacity (Figure 11a), and a simple equation can be 

used to determine the percentage that the observed signal deviates from the true signal 

(Figure 11b). This model can be to used better evaluate antigen concentration, especially for 

the intense Raman scatters that were investigated in Chapter 4 where the signal reported by 

the CCD can be adjusted to the actual value of scattering. 
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Figure 9: Schematic of instrument configuration with fiber optic probe head optics shown in black 
dashed box. 
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Figure 10: Modified Czerny-Turner imaging spectrometer.
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CONCLUSIONS 

In conclusion, many modern techniques can be used to develop sensitive, selective, 

and rapid detection methods for interrogating bacteria laden samples. Evaluation of these 

pathogens is important in multiple fields, with food safety and disease detection the 

motivation for research presented in this dissertation. At the forefront of the most recent 

advances, SERS-readout of two-site immunoassays has recently been developed and has 

been shown to allow for low levels of detection. In addition, SERS instrumentation offers the 

reliability, sensitivity, and ease-of-use demanded by laboratories and industry. With these 

considerations in mind, continued research and improvement could allow this technique to be 

integrated in diagnostic laboratories and field-monitoring for the screening of bacteria 

leading to timely measures for containment of contamination and correct therapeutics for 

those infected. 
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ABSTRACT 

A sandwich immunoassay is developed for the rapid, low-level detection of 

Mycobacterium avium subsp. paratuberculosis (MAP). MAP is the causative agent of 

Johne’s disease in cattle. One of the major obstacles in controlling the spread of this disease 

is the inability to rapidly detect small amounts of bacteria or other diagnostic makers shed 

during the subclinical stage of infection. This paper details the development and performance 

of an assay for sonicated MAP lysate that is based on surface enhanced Raman scattering 

(SERS). There are two key components of the assay: (1) using an immobilized layer of 

monoclonal antibodies that target a surface protein on the microorganism; and (2) tagging of 

captured proteins by extrinsic Raman labels (ERLs) that are designed to selectively bind to 

the captured protein and produce large SERS signals. By correlating the number of MAP 

bacilli present prior to sonication and the amount of total protein in the resulting sonicate, the 
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detection limit determined for total protein can be translated to the microorganism 

concentration. These findings yield detection limits of 500 and 1000 MAP/ml for sonicate 

spiked in phosphate buffer and in whole milk, respectively. Moreover, the time required to 

complete the assay, which includes sample preparation, antigen extraction, ERL incubation, 

and read out, is less than 24 h. The potential for incorporation of this assay into diagnostic 

laboratories is also briefly discussed. 

 

INTRODUCTION 

Johne’s disease is responsible for devastating losses in worldwide dairy production 

(52). The causative agent of this disease is Mycobacterium avium subsp. paratuberculosis, 

referred to hereafter as MAP. MAP has been found in domestic ruminants (e.g., cattle, sheep 

(38, 43), and goats (53, 54)) and wildlife (e.g., deer (27, 40, 41), antelope (8, 23), bison (64), 

and rabbits (6, 7, 33)). Based on a serological survey conducted by the National Animal 

Health Monitoring System in 1996 and 2002 (58, 61), 20-40% of the cattle herds in the 

United States are afflicted at some level by MAP. Moreover, the 1996 report projected that 

the annual economic impact on the United States dairy industry from this disease exceeds 

$220 million (61). 

Cattle are often exposed to MAP as calves (56). The disease develops through four 

stages and is generally diagnosed by symptomatic assessment and, when possible, 

quantification of shed bacteria. The four stages of progression are: silent, subclinical, clinical, 

and advanced cellular infection (63). During the silent stage, animals do not shed detectable 

amounts of the bacteria and are asymptomatic. In the subclinical phase, cattle shed small 

amounts of MAP in their feces and milk (e.g., 10 CFU per 50 ml of milk (29)) but still at 
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levels that are difficult to rapidly and reliably detect. This subtle level of shedding, 

nevertheless, can contaminate the surrounding habitat and spread MAP throughout a herd 

before its presence is detected. In the clinical phase of infection, the pathogen is shed at high 

levels, which can exceed 1010 organisms/g of feces (11). Symptoms during the terminal, 

advanced cellular infection stage of the disease are exemplified by chronic diarrhea, rapid 

weight loss, diffuse edema, reduced milk production, and infertility. 

There is a wide range of tests for MAP. Bacteriologic culture is the most accepted 

method and benefits from easy-to-use hardware. When coupled with symptomatic evaluation, 

culturing provides data central to distinguishing between clinical and subclinical stages of 

Johne’s disease. Culturing, however, typically requires 12 to 16 weeks of incubation (32). 

Serological tests, including complement fixation (CF), agar gel immunodiffusion (AGID), 

and enzyme-linked immunosorbent assay (ELISA), reduce testing time but can lack the 

sensitivity needed to detect MAP at subclinical levels (12-14, 16, 50, 51, 63). Methods that 

test for cellar immunity, such as the response to delayed-type hypersensitivity (DHT) and 

detection of elevated levels of gamma interferon (INF-γ), are also rapid but are indirect and 

can suffer from false-positives (31). Nucleic acid levels, after PCR amplification and gel 

electrophoresis analysis, can be determined in under three days (32) and can detect 10 MAP 

in a 2-ml milk sample when using immunomagnetic concentration (35). There are, however, 

challenges related to specificity (15, 24) and performance in complex sample matrices (35). 

It is therefore clear that improvements in sensitivity, selectivity, sample workup, speed, and 

detection are requisite in order to more effectively protect healthy animals against infection 

and the subsequent development and spread of Johne's disease (10).  
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This work explores the potential of surface-enhanced Raman scattering (SERS) to 

serve as a readout method for the low-level detection of MAP. Several laboratories, including 

our own, have demonstrated the merits of SERS readout in immunoassays (1, 19, 20, 30, 42, 

44, 45, 49, 65, 67) and DNA detection (9, 25, 28). In SERS, roughened metal surfaces 

amplify the Raman scattering of an adsorbed organic molecule. This enhancement is mainly 

due to increases in the electromagnetic field at the nanometric asperities of roughened, 

coinage metals (e.g., silver and gold). The same mechanism is operative at the surface of 

metallic nanoparticles. Coupled with potential contributions from chemical effects, 

enhancements of up to 1014 have been reported (36). 

Detection by SERS has several potentially valuable attributes with respect to 

traditional signal transduction methods such as radioisotope decay, colorimetry, and 

fluorescence (26, 39, 44). First, when employing gold nanoparticles, excitation in the red 

spectral region is used, which minimizes possible interference from native fluorescence. 

Second, SERS intensities for immobilized molecules are beginning to approach those of 

fluorescent dyes, and have the added feature of being less susceptible to photobleaching. 

Finally, the widths of Raman spectral bands are typically 10-100 times narrower than those 

of fluorescence, which reduces the potential for spectral overlap from multiple labels. The 

work herein seeks to take advantage of the first two attributes for the development of a rapid 

and highly sensitive assay for MAP. 

Our SERS-based strategy uses extrinsic Raman labels (ERLs) as a means to 

quantitatively take advantage of amplified scattering (20-22, 30, 44-48). ERLs (Figure 1A) 

incorporate the intrinsically strong Raman scattering from aromatic compounds (i.e., reporter 

molecules). In this assay, the organic molecule is first immobilized on the gold nanoparticles, 
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and then the molecule is coupled to a molecular recognition element (e.g., an antibody). The 

preparation of the capture substrate (Figure 1B) employs the same chemistry, with the 

coupling molecule forming a gold-bound thiolate and then reacting with the primary amines 

on antibodies. We note that the depictions in Figure 1 are idealized with respect to the 

architectures of the immobilized antibodies. A more random distribution of orientations is 

expected because of the presence of amine residues throughout the structure of the protein 

(18). The sandwich immunoassay (Figure 1C) can then be carried out in fewer than 24 h by: 

(1) extracting the antigen from solution; (2) labeling with ERLs; and (3) quantitating the 

antigen by SERS. We have previously applied this platform to the detection of 

immunoglobulin G (44), free prostate specific antigen (PSA) (30), viruses (20), and 

simulants of biological warfare agents (45). These works have shown that our SERS-based 

immunoassay not only offers low-levels of detection (e.g., ~30 fM for PSA in human serum) 

but also can record single-binding events on a capture substrate (47). 

This paper and the companion manuscript explore the adaptation of a highly sensitive 

SERS-based immunoassay system as a diagnostic platform for MAP. We use a recently 

developed antibody that selectively targets proteins located at the outer surface of MAP cells 

(2) and screen for activity and cross reactivity after immobilization. After optimizing 

blocking conditions and incorporating the most effective antibody into the capture substrate 

and ERLs, K-10 MAP sonicate is assayed. By correlating the number of MAP present prior 

to sonication with the amount of total protein in sonicate solution, detection limits of ~500 

and ~1000 MAP/ml for sonicate spiked in phosphate buffer and in whole milk, respectively, 

are achieved. The companion paper extends detection to whole cell MAP and investigates the 

possibility of signal amplification from shed protein. Taken together, this method is a 
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specific, sensitive, and rapid test for Johne’s disease that could efficiently track MAP 

infection. In addition, the quantitative nature of this technique could allow for more precise 

definitions of the disease stages (e.g., clinical versus subclinical) in terms of bacteria levels in 

feces and milk. 

 

MATERIALS AND METHODS 

Bacteria and sonicate preparation. Heat-killed, whole-cell MAP (K-10 bovine 

isolate) were grown at 37°C in Middlebrook’s 7H9 medium (Becton Dickinson, 

Cockeysville, MD) that was supplemented with 2 mg of mycobactin J/l (Allied Monitor Inc., 

Fayette, MO), 10% oleic acid albumin-dextrose complex (Difco, Detroit, MI), and 0.05% 

Tween 80 (Sigma Aldrich, St. Louis, MO). The bacilli, harvested from the culture media by 

centrifugation at 10,000g for 20 min, were washed twice with cold phosphate buffered saline 

solution (PBS; 0.15 M, pH 7.2). Following washing, the bacteria were either heat treated 

(80°C for 30 min) or sonicated. 

Whole-cell sonicated extracts of MAP (K-10 sonicate) in PBS (pH 7.4) were 

produced as described previously (62). After culturing MAP to an optical density of 0.2 to 

0.4 at 540 nm (OD540) and centrifuging, the pellet was resuspended in PBS and was 

sonicated. Sonication used a probe sonicator and consisted of three, 10-min cycles at 18 W 

on ice, with 10-min chilling periods between sonications. Debris was removed by 

centrifugation (12,000g for 5 min), and supernatants were harvested and stored at 20°C.  

The concentrations of the stock solutions of heat-killed, whole-cell bacteria were 

determined by: (1) flow cytometry using LIVE/DEAD® BacLight™ Bacterial Viability and 

Counting Kit (Molecular Probes, Eugene, OR); (2) bacterial enumeration through serial 
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dilution plating on Herrold’s egg yolk slants containing mycobactin J (2 mg/l); and/or (3) 

OD540 measurements. The average value for the stock solutions used in immunoassay 

development was 1.3±0.3×107 bacteria/ml (six samples of MAP in PBS). For the stock 

solutions that were sonicated, the bacteria concentration (pre-sonication) was determined to 

be 5×106 MAP/ml. After sonicating, the solution had a total protein concentration of 1 mg/ml 

as determined by absorbance measurements at 280 nm with a ND-1000 Spectrophotometer 

(NanoDrop Technologies, Inc., Rockland, DE). This value was further confirmed by using 

the Bio-Rad protein assay (Richmond, CA). 

 Heat-killed Salmonella typhimurium and heat-killed Escherichia coli O157:H7 were 

gifts from Nancy Cornick (Department of Veterinary Microbiology and Preventive Medicine, 

Iowa State University, Ames, IA). 

Preparation of Sonicate Spiked Samples in PBS and Whole Milk. Antigen 

solutions were prepared by serial dilution of the stock, K-10 sonicate with 10 mM PBS (pH 

7.4, 10 mM phosphate buffered saline powder packs, Sigma-Aldrich) or pasteurized, whole 

milk. Between dilutions, solutions were mixed by vortexing. Distilled water, subsequently 

deionized with a Millipore Milli-Q system (18 MΩ, Billerica, MA), was used for the 

preparation of all aqueous reagents. For assays in a milk matrix, whole milk at room 

temperature was employed in place of PBS during serial dilution. Specifically, the first 

dilutions were prepared by adding 10 μl of 1 mg/ml sonicate in PBS to either 10 μl of whole 

milk (5×105 ng/ml) or 90 μl of whole milk (105 ng/ml), and serial dilutions with whole milk 

were continued from these concentrations. 

Antibodies. Monoclonal antibodies (mAbs) to MAP2121c, a MAP surface protein, 

have recently been produced (4). Three monoclonal antibodies (8G2, 13E1, and 12C9), the 
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former two specific for the MAP2121c protein, were tested for performance after purification 

using Melon Gel (Pierce, Rockford, IL). This step removes extraneous proteins from the 

tissue culture supernatants that could potentially compete with mAb immobilization. The 

concentrations of the mAb solutions were determined spectrophotometrically (ND-1000, 

standard mass extinction coefficient of 13.7 L g-1 cm-1 for 10 mg/mL IgG solution), and all 

mAb dilutions employed 50 mM borate buffer (pH 8.3 borate buffer packs, Pierce). 

ERL Preparation. The design, preparation, and optimization of the ERLs were 

detailed in our previous work (20). Briefly, 1.0 ml of 60-nm gold particles (<8% variation in 

diameter, 2.6 x 1010 particles/ml, Ted Pella, Redding, CA) were added to a centrifuge vial. 

The pH of the suspension was adjusted with 40 μl of 50 mM borate buffer (pH 8.3). To this 

colloidal suspension, 10 μl of 1.4 mM DSNB (i.e., 5,5’-dithiobis (succinimidyl-2-

nitrobenzoate)) in acetonitrile (HPLC-grade, Fisher, Pittsburgh, PA) were added. DSNB was 

synthesized according to previously described methods (30). DSNB coats the gold 

nanoparticles through chemisorption as the corresponding thiolate. After 7 h, 20 μg of one of 

the three mAbs were added to the mixture and incubated for ~14 h. At pH 8.3, the amines on 

the mAb are deprotonated and form an amide linkage upon reaction with the succinimidyl 

esters of the DSNB-based monolayer. Finally, to block unreacted succinimidyl esters, as well 

as stabilize the colloidal solution, 100 μL of 10% bovine serum albumin (BSA, Sigma-

Aldrich) in 2 mM borate buffer were added to the suspension and allowed to react for 7 h.  

Next, the colloidal suspension was centrifuged (Eppendorf MiniSpin, Westbury, NY) 

at 2,000g for 10 min at room temperature to remove excess reagents. After decanting the 

clear supernatant, the loose colloidal gold pellet was resuspended in 1000 µl of 2 mM borate 

buffer containing 1% BSA. This centrifugation/resuspension procedure was repeated twice to 
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maximize excess reagent removal. The volume after the last resuspension step was 500 µL. 

Finally, 50 µL of 10% sodium chloride (Sigma-Aldrich) were added to the suspension which 

was then passed through a Costar 0.22-µm syringe filter (Fisher) in order to remove any 

aggregates. 

Capture Surface Preparation. The fabrication of the capture substrate followed past 

procedures (20, 30, 44, 45). Template stripped gold (TSG) was prepared by resistively 

evaporating ~300 nm of gold (99.9%) at 0.1 to 0.2 nm/s onto a 4-in, p-type, test grade silicon 

[111] wafer (University Wafer, South Boston, MA) using an Edwards 306A evaporator. 

After applying cleaned 1×1 cm glass chips to the gold surface via two-part epoxy (Epo-tek 

377, Billerica, MA) and oven curing at 150°C for 1.75 h, the glass slides were carefully 

separated from the wafer, exposing a smooth gold surface.  

A poly(dimethyl siloxane) (PDMS, Dow Corning, Midland, MI) stamp with a 

centered, 3.2-mm diameter hole was soaked in a 2 mM octadecanethiol (ODT, Sigma-

Aldrich) ethanolic solution. The stamp was dried under a stream of high purity nitrogen. The 

TSG substrates were then inked (~30 s) with the ODT coated-PDMS stamp. This procedure 

formed a hydrophobic barrier that surrounded a 3.2-mm assay address. These samples were 

subsequently exposed to a 1 mM ethanolic (Aaper, Shelbyville, KY) solution of 

dithiobis(succinimidyl propionate) (DSP, Sigma-Aldrich) for ~14 h which formed a DSP-

derived monolayer within the address area. After rinsing with ethanol and drying under a 

stream of nitrogen, 20 µl of capture antibody (100 µg/ml) were dispensed onto each 

substrate. This step couples the antibody to the DSP-based monolayer by the same 

mechanism as that for DSNB. After incubation for 7 h in a humidity chamber, the substrates 

were rinsed three times with 2 ml of 10 mM PBS buffer. Unreacted succinimdyl endgroups 
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of the monolayer were “capped” with a 20 µl drop of blocking buffer ~14 h (i.e., SuperBlock 

and StarterBlock (Pierce); 5% BSA in PBS, 2% Carnation dry milk in PBS, or Casein 

blocking solution (Sigma-Aldrich)).  

Immunoassay Procedure. After blocking, the capture surface was exposed for 7 h to 

either heat-killed, whole-cell 1.0×107 MAP/ml or varying concentrations of K-10 sonicate in 

10 mM PBS (pH 7.4) at room temperature in a humidity chamber. After rinsing three times 

with 2 mM borate buffer (pH 8.3, 150 mM NaCl), a 20-μl drop of the ERLs was placed on 

the substrates and allowed to react ~14 h. The substrates were again washed with the 2 mM 

borate solution, gently dried with nitrogen, and the SERS spectra collected. This procedure 

follows that depicted in Figure 1C. 

SERS Measurements with a NanoRaman™ I Spectrometer. Raman spectra were 

collected using a NanoRaman™ I spectrometer (Concurrent Analytical, Waimanalo, HI). 

This instrument consists of a HeNe laser (632.8 nm, 30 mW, 25-μm diameter spot size), 

fiber-optic-based probe head, an f/2.0 Czerny-Turner imaging spectrometer (6-8 cm-1 

resolution), and a thermoelectrically cooled CCD (0°C, Kodak 0401E). The laser light was 

focused as a 25-μm spot (2-3 mW) onto the substrate surface at normal incidence via an 

objective with a numerical aperture of 0.68, which also collected the scattered radiation. 

Exposure times of 1-s were employed with an average of four or five measurements, as noted 

in the Results section, collected from different locations on each sample. 

 

RESULTS 

Antibody Screening. As shown in our previous work on feline calicivirus (37), 

candidate antibodies should be screened in order to determine those that are the most 
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effective at binding the antigen after immobilization on the capture substrate (34). As such, 

Dot Blot reactivity with heat-killed, whole cell MAP was used to narrow a pool of eight 

mAbs, selected from an ongoing Johne’s Disease Integrated Program (JDIP) project (4, 5), to 

three. These three were designated 13E1, 12C9, and 8G2. Both 13E1 and 8G2 react with 

different epitopes on MAP2121c (4) and 12C9 binds to an unidentified MAP protein (5). 

After purification, each antibody was tested by performing an immunoassay with an antigen 

concentration of 1.0×107 MAP/ml and a PBS blank.  

Using the sensor platform depicted in Figure 1, the SERS spectra shown in Figure 2 

were obtained. The strongest feature in each spectrum (1336 cm-1) is assigned to a symmetric 

nitro stretch (νs(NO2)), while the less intense band (1588 cm-1) is diagnostic of an aromatic 

ring mode. These and all the other spectral features that are present are consistent with those 

expected for the DSNB-derived monolayer. Furthermore, the evolution of the intensities of 

the these features is indicative of the amount of ERLs and thus antigen bound to the surface; 

that is, a larger SERS signal is diagnostic of a higher level of captured antigen. The signal for 

νs(NO2) in each assay, as obtained from measurements at four locations per sample, was 

293±75 cts/s for 8G2, 223±80 cts/s for 12C9, and 1611±63 cts/s for 13E1. The blank, 

performed with 13E1, had a signal of 256±21 cts/s. Thus, 13E1, with the largest SERS 

intensity and approximately the same blank signal as for 12C9 and 8G2, was the most 

effective of the mAbs for our heterogeneous immunoassay. 

These samples were also examined by light microscopy. The images showed that 

only 13E1 substrates captured an observable amount of MAP, which is roughly a 1.5×0.5 μm 

rod. In contrast, the substrates coated with 12C9 or 8G2 exhibited little evidence for binding 

(data not shown). Based on the combined weight of these two sets of results, 13E1 was 
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chosen for the remainder of the studies. It is important to note that while 12C9 and 8G2 

mAbs had higher titers and stronger immunoblot responses (J. P. Bannantine, unpublished 

data), 13E1 was more effective when immobilized on the capture substrate. This exemplified 

the importance of screening mAbs after being tethered to substrates in a heterogeneous 

immunoassay (17, 37). 

Cross Reactivity. Specificity is another important figure of merit for diagnostic 

methods. Cross reactivity studies of 13E1 with other closely related Mycobacteria have 

recently been performed via immunoblots (4). Those studies revealed 13E1 also reacted with 

Mycobacterium avium complex (MAC) members. However, and more importantly, there was 

a lack of detectable cross reactivity with M. bovis, the other Mycobacterial pathogen in 

cattle, as well as non-MAC Mycobacteria which could also be present in bovine feces or 

milk.  

To further assess the specificity of 13E1, especially after immobilization on the 

substrate, cross reactivity studies were performed by using two commonly occurring bacteria 

in bovine milk and feces: E. coli O157:H7 (57) and Salmonella typhimurium (59, 60). These 

assays were therefore carried out with 13E1 platforms and either E. coli or S. typhimurium as 

a potential cross reactor. After exposing the samples to ERLs, the intensity for νs(NO2) was 

obtained. As shown in Figure 3, the results yielded 231 ± 16 cts/s for the PBS blank (no 

bacteria), 279±23 cts/s for 1.0×108 cfu of E. coli O157:H7/ml, and 135±15 cts/s for 7.3×109 

cells of S. typhimurium/ml. While more exhaustive cross reactivity studies remain to be 

performed, these results indicate there is no loss in selectively when 13E1 is immobilized on 

the capture substrate.  
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Blocker Optimization. As part of an optimization protocol, studies were performed 

to determine which blocking agent would minimize the blank signal while maximizing the 

response for MAP. To this end, solutions of SuperBlock, StartingBlock, 5% BSA in PBS, 2% 

dry milk in PBS, Casein based blocker, or PBS (no blocker) were placed on separate 13E1 

substrates. These substrates were then exposed to PBS (blank) or to a solution containing 

1.0×105 MAP/ml. The results from the SERS readout of each sample are summarized in 

Figure 4. The samples treated with StartingBlock had the highest signal for MAP but, 

according to the blank response, also had the highest level of nonspecific adsorption of ERLs. 

Moreover, the blocking solutions of 5% BSA, 2% dry milk, and Casein failed to remain 

confined in the 3.2-mm sample address because of their low surface tension. This “drop 

spreading” led to low signals for the MAP-containing samples. While PBS (no blocker) and 

SuperBlock have roughly the same blank and MAP signals, the precision of the measurement 

was three times better for SuperBlock. Based on these results, SuperBlock was used in the 

subsequent studies. 

Spiked PBS Samples. The K-10 sonicate samples, with concentrations ranging from 

1×102 to 5×105 ng/ml, were incubated with the capture platform (Figure 1B). After rinsing, 

the substrates were exposed to ERLs (Figure 1C). Importantly, these two steps, as well as 

those involved in sample preparation (e.g., sonication), require less than 24 h to complete. 

The resulting SERS spectra, read out in only 1 s, and calibration curve, prepared by 

subtracting the background at 1225 cm-1 from the intensity of νs(NO2) at 1336 cm-1, are 

shown in Figure 5. As evident, the SERS signals increased in a concentration-dependent 

manner with sonicated antigen. The lowest detectable signal, as defined by the blank signal 

plus three times its standard deviation, is denoted by the dashed line in the calibration curve. 
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The limit of detection (LOD), which corresponds to the intersection of these two curves, was 

calculated to be ~100 ng/ml. Since the original solution (5×106 MAP/ml) produced 1 mg/mL 

of protein, the LOD for the K-10 sonicate is ~500 MAP/ml. 

Spiked Milk Samples. To determine the feasibility of analyzing relevant biological 

samples, an initial study was performed using a milk matrix. Room temperature, pasteurized, 

whole milk was spiked with the K-10 sonicate for concentrations up to 5×105 ng/ml. As 

before, the assay procedure was performed in fewer than 24 h, with the resulting calibration 

curve shown in Figure 6. Importantly, the milk matrix plot is strongly similar to that of the 

PBS matrix in Figure 5b. That is, the close agreement between the best fit lines (i.e., slopes 

and y-intercept) and precision (i.e., standard deviations for individual samples) indicate that 

the performance achieved in the clean, PBS matrix is not compromised when using the much 

more complex whole milk matrix. Furthermore, the plot in Figure 6 translates to a LOD of 

~200×102 ng/ml (~1000 MAP/ml). These findings elucidate the robust nature of our assay 

system with respect to its potential application in complex matrices. These results also 

demonstrate that analysis in whole milk can be carried out with little sample workup. 

 

DISCUSSION 

There is a wide range of diagnostic tests for Johne’s disease, each with the previously 

detailed strengths and limitations in performance. In order to protect healthy animals from 

this disease and minimize its spread, a more effective means to identify infected cattle, track 

disease development, and characterize clinical stages are necessary. The results herein 

demonstrate that our SERS-based immunoassay can potentially address these needs and be 

readily extended to complex matrices like milk. LODs for the K-10 sonicate, obtained in 24 
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h, are ~500 MAP/ml in PBS and ~1000 MAP/ml in pasteurized, whole milk. This level of 

performance is a direct result of our integration of the 13E1 antibody as a recognition 

element with SERS as a readout tool.  

Several key features of this assay offer advantages over current detection techniques. 

First, INF-γ detection, as an indirect method, can be problematic because of false-positives. 

PCR, while a direct method, may yield false-negative results in complex matrices (55). 

Immunoassay techniques, including ELISA and our SERS-based immunoassay, show 

improvements over INF-γ detection and PCR by incorporation of antibody recognition. In 

our system, the 13E1 mAb targets a surface protein (MAP2121c) that plays a role in the 

MAP invasion of epithelial cells (3). The screening and cross reactivity studies carried out 

earlier (4) and in this work highlight the specificity of this mAb, which could allow for a low 

number of false-positive results in clinical samples. Of particular importance is the lack of 

detectable cross reactivity with M. Bovis, which is the other Mycobacterial pathogen in cattle.  

Second, SERS, in conjunction with ERLs, is a highly sensitive readout tool. By taking 

advantage of the gold to disulfide linking chemistry, many DSNB reporter molecules are 

easily tethered to a single nanoparticle, amplifying the signal from a single binding event. In 

addition, the DSNB-derived monolayer can tether antibodies and thus form a biospecific 

label. By incorporating these ERLs in our sandwich immunoassay, the MAP concentration is 

quantified by the intensity of the intrinsically strong νs(NO2) of the DSNB-derived 

monolayer, and low-levels of detection are obtained. In addition, the good 

precision/reproducibility in measurements seen in the sonicate immunoassay is partially due 

to recent advances in formation of uniform nanoparticles and preparation of optimized ERLs. 
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Another important feature of our SERS-based assay is its potential for integration into 

diagnostic laboratories. The instrumentation (a fiber-optic based Raman spectrometer) has no 

moving parts, is easy-to-use, and has a small footprint on the laboratory benchtop. In 

addition, breakthroughs in optical filters and detectors have decreased the costs of key 

hardware, with instrument pricing from several manufacturers on the order of $10,000-

$15,000. Moreover, other components of the assay can be readily packaged into a kit that 

includes both pre-made capture substrates and ERLs. Based on this, an assay would be 

performed by capturing the antigen from milk and incubating ERLs in under 24 h, and 

research to extend our assay to fecal samples is in progress.  

In summary, we believe that our assay is well positioned to address many of the 

challenges associated with Johne’s disease detection, especially with respect to speed, 

specificity, and sensitivity. As such, experiments focused on the analysis of samples from 

animals clinically infected with MAP are underway. Ongoing work is also aimed at 

improvements in performance by examining approaches to reduce nonspecific adsorption and 

to further amplify the SERS signal from ERLs (e.g. better scatterers and tailored 

nanoparticles). Finally, the extension of this assay to the detection of whole MAP bacteria is 

detailed in the following companion paper (66).  
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FIGURES 

FIG. 1. Schematic of the preparation and procedure for the SERS readout, sandwich 
immunoassay. 
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FIG. 2. Representative SERS spectra in screening studies using heterogeneous immunoassay 
(vertically offset for clarity) and 13E1 (PBS blank) and 8G2, 12C9 and 13E1 mAbs reacted 
with 1.0×107 heat-killed MAP/ml. Data show 13E1 had the highest νs(NO2) intensity. The 
blank spectrum was comparable to 12C9 and 8G2 spectra. 
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FIG. 3. 13E1 cross reactivity with commonly occurring bacteria in bovine feces. Each 
substrate exposed to 105 MAP/ml, PBS blank, E. coli O157:H7 (108 cells/ml), or Salmonella 
(107 cells/ml). 13E1 did not cross react with E. coli or Salmonella as signals were 
comparable to the PBS blank. 
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FIG. 4. SERS intensity for ERLs binding to MAP after various blocking solutions: (1) 
SuperBlock, (2) StartingBlock, (3) 5% BSA in PBS, (4) 2% dry milk in PBS, (5) Casein 
based blocker, (6) PBS/no blocker with either a PBS blank or 1.0×105 MAP/ml for the 
antigen step. SuperBlock yielded the largest SERS intensity and lowest blank signal. 
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FIG. 5. Spectra and calibration curve for sonicate spiked PBS samples. (A) Spectra 
(vertically offset for clarity) and (B) corresponding calibration curve from SERS 
measurements. Dashed line corresponds to the blank plus three times its standard deviation. 
Best fit line is y=631x-1048, R2=0.98. 
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FIG. 6. Calibration curve for K10 sonicate performed in a milk matrix. Dashed line 
corresponds to the blank plus three times its standard deviation. Best fit line is y=592x-993, 
R2=0.99. 
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ABSTRACT 

The etiological agent of Johne’s disease is Mycobacterium avium subspecies 

paratuberculosis (MAP). Controlling the spread of this disease, however, is hindered by the 

lack of sensitive, selective, and rapid detection methods for the bacteria in milk and feces. By 

using a recently optimized sandwich immunoassay (B. J. Yakes, R. J. Lipert, J. P. 

Bannantine, M. D. Porter, Clin. Vaccine Immunol., submitted) that incorporates newly 

prepared antibodies for MAP and surface-enhanced Raman scattering (SERS) for sensitive 

readout, a detection limit of ~630 and ~740 MAP/ml is achieved in phosphate buffered saline 

and whole milk samples, respectively, that were spiked with heat-treated MAP. Interestingly, 

these detection limits are much lower than expected based on a simple theoretical model for 

the assay. Efforts to reconcile this discrepancy produce evidence for the shedding of a major 

membrane protein from the heat treated bacilli. We show that the presence of shed protein 
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can be exploited as a mechanism for the design of a highly sensitive assay for MAP, which 

can potentially be applied to a wide range of other cell and virus assays.  

 

INTRODUCTION 

Mycobacterium avium subsp. paratuberculosis (MAP) is responsible for extensive 

losses in dairy production on a global scale (45). MAP is also found in other domestic 

ruminants (e.g., sheep (31, 35), and goats (47, 48)) and wildlife (e.g., deer (20, 32, 33), 

antelope (6, 16), bison (54), and rabbits (4, 5, 27)). Animals that are afflicted with MAP 

progress first from silent infection to a subclinical phase but do not yet show observable 

symptoms. Subtle levels of shedding during this time can, nonetheless, lead to the 

undetectable contamination of a herd. Unfortunately, once the physical symptoms associated 

with the clinical and advanced cellular disease phases (e.g., weight loss and chronic diarrhea) 

become evident, the damage is irreversible. 

To control the spread of this disease, a detection method must be sensitive, rapid, 

field deployable, and cost effective. The assay must also be selective for MAP over other 

bacteria often found in milk and fecal samples from cattle. Currently available methods fall 

short of these combined goals. Specifically, bacteriologic culturing is lengthy (12-16 weeks) 

(25), serological tests lack sufficient sensitivity for detection at subclinical levels (8, 9, 11, 

43, 53), and gamma interferon (23) and nucleic acid probe (10, 17) determinations can be 

limited by low specificity. PCR-based methods may also suffer from false-negatives in 

complex matrices (e.g., milk) (50). In the preceding paper (56), a method for detecting MAP 

sonicate in less than 24 h was designed, optimized, and yielded a limit of detection of ~500 
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bacilli/ml in a buffer matrix and ~1000 bacilli/ml in a milk matrix. The work herein examines 

the extension of this method to the analysis of samples containing whole MAP cells. 

Surface-enhanced Raman scattering (SERS) has recently been shown to function as a 

sensitive detection method in bioanalytical sciences, especially in the area of chip scale 

assays [e.g., immunoassays (1, 13, 14, 22, 34, 36, 37, 41, 55, 59) and DNA (7, 18, 21)]. The 

basis of SERS lies in the use of a roughened metal surface to amplify normal Raman 

scattering, which is an inelastic scattering of light from vibrational transitions in a molecule 

that undergo a change in polarizability. The observed enhancement in Raman scattering (up 

to 1014 times (30)) is because of two effects: chemical and electromagnetic. The chemical 

component is based on the formation of a charge-transfer state between the metal surface and 

the adsorbed, Raman scattering molecule (51) and is viewed as contributing approximately 

two orders of magnitude to the overall enhancement. 

The remainder of the enhancement is attributed to electromagnetic effects. When light 

is incident on a metal surface, conduction electrons in the metal can collectively oscillate. 

This process, known as surface plasmon resonance, has a wavelength dependence that is 

connected to the nanometeric roughness of metallic surfaces, and the size and shape of 

nanoparticles (28). There is also a significant body of theoretical work (19, 29, 30, 42, 58) 

that has proven invaluable to the fundamental understanding both mechanisms.  

The method introduced in the previous paper (56), and further developed here, 

capitalizes on these theoretical considerations. By using extrinsic Raman labels (ERLs), 

Raman scattering molecules are chemisorbed to SERS active substrates (i.e., gold 

nanoparticle) and thus takes advantage of both chemical and electromagnetic effects. When 

incorporated into a novel SERS-based sandwich immunoassay (Figure 1), high sensitivity 
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can be achieved (e.g., pico- to femtomolar (22) and single binding event (38) detection). In 

this assay format, a biologically active molecule is selectively sandwiched between a metal 

surface and an extrinsic Raman label (ERL) by a capture antibody and a labeling antibody. 

The work herein evaluates this assay platform for the detection of whole MAP bacteria and 

presents a basis for the observed performance. The signal amplification achieved via 

shedding of a surface protein from MAP is also introduced with results indicating potential 

applicability to other pathogens. 

 

MATERIALS AND METHODS 

Bacteria Preparation. MAP, K-10 strain bacteria were cultured at the National 

Animal Disease Center (NADC, Ames, IA) in Middlebrook’s 7H9 medium (Becton 

Dickinson, Cockeysville, MD) that was supplemented with mycobactin J (Allied Monitor 

Inc., Fayette, MO), oleic acid albumin-dextrose complex (Difco, Detroit, MI), and Tween 80 

(Sigma-Aldrich, St. Louis, MO) (56). The bacilli were removed by centrifugation, washed 

with cold phosphate buffered saline solution (PBS; 0.15 M, pH 7.2), and heat treated at 80°C 

for 30 min. Whole cell bacterial concentrations were determined by flow cytometry using 

LIVE/DEAD® BacLight™ Bacterial Viability and Counting Kit (Molecular Probes, Eugene, 

OR). These measurements yielded an average value of 1.3±0.3×107 bacteria/ml. These values 

were further verified by culturing live MAP and serial dilution plating on Herrold’s egg yolk 

slants containing mycobactin J (2 mg/liter).  

Preparation of PBS and Whole Milk Samples. Antigen solutions were prepared at 

room temperature by serial dilution of the MAP stock solution with either PBS (pH 7.4, 10 

mM powder packs, Sigma-Aldrich) or pasteurized, whole milk. Between each dilution, 
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solutions were briefly vortexed to ensure homogeneity. Distilled water, subsequently 

deionized with a Millipore Milli-Q system (18 MΩ, Billerica, MA), was used for the 

preparation of all aqueous reagents. For the milk matrix, the initial dilution was made by 

adding 10 μl of 107 MAP/ml in PBS to 90 μl of whole milk; all further serial dilutions were 

performed from this 106 MAP/ml stock.  

Antibodies. The monoclonal antibody (mAb), labeled 13E1, is specific to the major 

membrane protein MAP2121c (2). The MAP2121c protein was recombinantly produced in 

E. coli and subsequently used to immunize mice for production of mAbs (3). 13E1 was then 

purified from tissue culture supernatants at the Iowa State University Hybridoma Facility 

using Melon Gel (Pierce, Rockford, IL). The 13E1 concentration was determined by 

spectrophotometric measurements at 280 nm (ND-1000, ε=13.7 L g-1 cm-1, NanoDrop, 

Wilmington, DE). All dilutions of 13E1 employed 50 mM borate buffer (pH 8.3 borate 

buffer packs, Pierce). 

ERL Preparation. Previous studies presented a detailed procedure for the formation 

of ERLs (14, 56). Briefly, 1.0 ml of 60-nm gold particles (<8% variation in diameter, 2.6 x 

1010 particles/ml, Ted Pella, Redding, CA) was mixed with 40 µl of 50 mM borate buffer (pH 

8.3). This step was followed by the addition of 10 µl of 1 mM 5,5’-dithiobis (succinimidyl-2-

nitrobenzoate), DSNB, in acetonitrile (HPLC-grade, Fisher, Pittsburgh, PA). DSNB coats the 

nanoparticles as an adlayer of gold-bound thiolate and serves as the Raman scatter and linker 

molecule for antibody attachment. After 7 h of incubation, 20 μg of 13E1 were added and 

reacted for ~12 h, a step which tethers the mAb to the DSNB-derived coating via an amide 

linkage.(15, 26, 52) Finally, 100 μl of 10% bovine serum albumin (BSA, Sigma-Aldrich) in 2 
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mM borate buffer were pipetted into the suspension and reacted for 7 h to block unreacted 

succinimidyl esters.  

For removal of excess reagents, the colloidal suspension was centrifuged (Eppendorf 

MiniSpin, Westbury, NY) at 2,000g for 10 min. The supernatant solution was removed, and 

the loose ERL pellet was resuspended in 1000 µl of 2 mM borate buffer containing 1% BSA. 

This process was repeated twice to maximize removal of unreacted materials, with a final 

resuspension volume of 500 µl. The next step added 50 µl of 10% w/v sodium chloride 

(Sigma-Aldrich) to the suspension in order to mimic biological conditions. Finally, to remove 

any large clusters of nanoparticles, the solution was passed through a 0.22-µm syringe filter 

(Costar, Fisher). 

Capture Surface Formation. The capture substrates were constructed per earlier 

protocols (14, 22, 36, 37, 56). Gold substrates were prepared by resistive evaporation of ~300 

nm of 99.9% pure gold at 0.1 to 0.2 nm/s onto a 4-in. p-type, test grade silicon [111] wafer 

(University Wafer, South Boston, MA) using an Edwards 306A evaporator. Cleaned 1×1 cm 

glass chips were then gently affixed to the gold surface via two-part epoxy (Epo-tek 377, 

Billerica, MA) and cured at 150°C for 1.75 h. Separation of glass chips from the wafer 

exposed the underlying gold surface. The gold chips were then modified by forming a 

hydrophobic barrier that surrounds the assay address. To this end, an octadecanethiol (Sigma-

Aldrich) coated, poly(dimethyl siloxane) (Dow Corning, Midland, MI) stamp, with a 3.2-mm 

diameter centered hole, was used to ink the gold surface. The substrates were then exposed to 

a 1 mM, ethanolic (Aaper, Shelbyville, KY) solution of dithiobis(succinimidyl propionate) 

(DSP, Sigma-Aldrich) for 14 h. After rinsing the substrates with ethanol and drying under a 

stream of high purity nitrogen, 20 µl of 13E1 (100 µg/ml) were pipetted onto the substrate 
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and reacted for 7 h. This step linked the mAb to the substrate by the same mechanism used in 

the ERL preparation. The slides were then rinsed three times with 2 ml of 10 mM PBS buffer. 

Finally, unreacted succinimidyl endgroups were capped with SuperBlock (20 µl drop, 

Pierce).  

Immunoassay Protocol. The capture substrates were exposed to varying 

concentrations of heat-killed, whole cell MAP (referred to hereafter simply as MAP) in 10 

mM PBS buffer (pH 7.4) or pasteurized, whole milk. After incubating at room temperature in 

a humidity chamber for 7 h, the substrates were washed three times with 2 mM borate buffer 

(pH 8.3) with 150 mM NaCl. Next, the captured antigen was labeled with ERLs (20 μl drop) 

through a 14-h incubation step. Finally, the surfaces were rinsed with the borate buffer and 

gently dried with nitrogen. 

SERS Measurements: NanoRaman™ I. SERS spectra for the immunoassay were 

collected using a NanoRaman™ I spectrometer (Concurrent Analytical, Waimanalo, HI) with 

a HeNe laser (632.8 nm, 30 mW output), fiber-optic-based probe head, an f/2.0 Czerny-

Turner imaging spectrometer (6-8 cm-1 resolution), and a 0°C thermoelectrically cooled CCD 

(Kodak 0401E). Normal incidence laser light was focused onto the substrate surface via a 

0.68 numerical aperture objective (25-μm diameter spot, 2-3 mW at surface), and exposure 

times of either 1- or 5-s were employed. The same objective and fiber optic probe collected 

the scattered radiation. All the data points in the resulting calibration curves are the average 

of five measurements at different locations on individual capture substrates. 

SERS Measurements: Raman Microscope. The samples were also examined by 

using an in-house Raman spectroscopy microscope. This system was composed of an optical 

microscope (Olympus BH-2, Centervalley, PA) and spectrograph (SpectraPro, 300i, Acton 
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Research, Acton, MA) that was connected to a thinned, back-illuminated, liquid nitrogen-

cooled CCD (LN/CCD-1100PB, Princeton Instruments, Trenton, NJ). For spectral 

measurements, a 60-mW HeNe laser (632.8 nm) was attenuated through a variable, neutral 

density filter (Thorlabs, Newton, NJ). The substrate was mounted on the microscope sample 

stage, and laser light was focused through a 100×  objective to form a ~1.5-μm diameter spot 

size at an incident power of ~1 mW. The scattered light was collected through the same 

objective and directed to the spectrograph. All the microscopy-based spectra were collected 

with a 2-s integration time via WinSpec/32 (Princeton Instruments), and microscope images 

were obtained with ATI Multimedia video software (ATI Technologies, Markham, Ontario). 

Scanning Electron Microscopy (SEM) Imaging. SEM images were obtained using 

a JEOL 59101v instrument (Tokyo, Japan). Each sample was sputter coated with a thin layer 

of gold prior to loading in the SEM chamber. A working distance of 10 mm and an 

accelerating voltage of 15 kV were used. All the images herein are from secondary electrons. 

 

RESULTS 

Spiked PBS Samples. As noted earlier, MAP solutions in PBS were incubated with 

the capture substrate, exposed to the ERLs, and read out with an integration time of 5 s 

(Figure 1: B1, C1). The overall process was completed in fewer than 24 h. The resulting 

SERS spectra and calibration curve are presented in Figure 2. All the spectral features 

evident in Figure 2a are consistent with vibrational modes for the DSNB-derived monolayer 

that coats the ERLs. The strongest band in the spectra is at 1336 cm-1 and is attributed to a 

symmetric nitro stretch, νs(NO2), whereas the weaker bands at 1062 and 1554 cm-1 are 
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assigned to aromatic ring modes. In accord with Figure 1, the SERS intensities should track 

with the amount of bacteria in the antigen solution, and this trend is observed in Figure 2a. 

To create the calibration curve in Figure 2b, the SERS intensity in each spectrum was 

calculated by subtracting the background at 1225 cm-1 from the signal maximum at 1336 cm-

1 and plotted as a function of MAP concentration. The plot shows the expected increase in 

SERS intensity with an increase in MAP concentration, and a linear dynamic range, 

discussed in more detail later, spans at least five orders of magnitude. The lowest detectable 

signal, defined as the blank signal plus three times its standard deviation, is marked by the 

dashed line on the calibration plot. The intersection of this line with the best-fit to the data 

defines the limit of detection (LOD), which in this assay is ~630 MAP/ml. 

Spiked Whole Milk. To assess performance in more complex matrices, milk was 

spiked with MAP at concentrations ranging from 0 to 5.0×106 MAP/ml. These assays 

followed the same procedure used for PBS but employed a readout time of 1 s. The resulting 

calibration curve is shown in Figure 3. Interestingly, the LOD in the whole milk matrix is 

~740 MAP/ml, which is only slightly larger than that found when using PBS. Moreover, the 

results for PBS (Figure 2) and whole milk (Figure 3), as judged by the best fit lines, y-

intercept, and precision are strikingly similar after taking into account the difference in 

integration times (5 s for spiked PBS and 1 s for spiked milk). These similarities argue that 

the presence of a complex matrix (whole milk) does not compromise the performance of our 

MAP assay. 

MMP Shedding. While the performance of this assay is beginning to meet the 

multifaceted needs for MAP detection, a more in-depth examination of the data (e.g., LOD) 

raises questions as to the origins of the results. As discussed in detail shortly, the theoretical 
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LOD for our SERS-based assay is ~8×105 cells/ml. However, the experimentally determined 

LOD is more than three orders of magnitude lower than this prediction. This discrepancy led 

to investigations to evaluate the signal amplification per cell, with studies emphasizing the 

possibility of protein shedding.  

Two experiments were performed to determine if free MAP2121c protein was present 

in the bacterial solution, which would potentially contribute to response via the pathway 

depicted in Figure 1:B2 and C2. The first experiment carried out assays using MAP-

containing solutions before and after removal of MAP bacilli. The second study used capture 

substrates that had been exposed to solutions containing MAP and subsequently interrogated 

with a Raman microscope. This microscope has a focused laser spot that is comparable in 

size to that of a MAP bacillus, and can therefore be used for characterizations of the SERS 

response in areas with and without bacteria present.  

To these ends, one set of substrates was exposed to MAP-containing solutions (20 

μl). The remaining solutions were then centrifuged at 7,000 rpm (~3,300g) for 10 min to 

pellet out the bacteria. Next, 20 μl of the resulting supernatant were pipetted onto a second 

set of capture substrates. After completing the incubations with the antigenic solutions and 

ERLs, the SERS responses and light microscope images of each sample were obtained. The 

microscope images (data not shown) revealed that: (1) bacteria were bound to the substrates 

exposed to the whole cell MAP solutions, and (2) no bacteria were detectably captured on the 

substrates treated with only the supernatant solution. These results indicate that the 

centrifugation step effectively removes MAP from solution.  

Figure 4 summarizes the data obtained from the assays of the whole cell MAP 

solutions and supernatant from the same solutions after centrifugation. The two data sets plot 
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SERS intensities of the νs(NO2) versus the MAP concentration in the original solutions. The 

two plots, which exhibit an increase in signal with an increase in MAP concentration, are 

virtually indistinguishable. These findings begin to validate our hypothesis of protein 

shedding. In other words, there is major membrane protein (MMP) in the whole cell 

solutions, which can be captured and labeled. Furthermore, the remarkably strong similarity 

of the two plots argues that shed protein is the overwhelming contributor to the observed 

responses for the whole cell solutions. 

 The second experiment further tested the shedding hypothesis by using an in-house 

designed Raman Microscope and the capture substrates exposed to whole cell MAP. With 

this instrument, the capture substrate can be translated under the 1.5-μm laser spot to evaluate 

the signature of a single, captured bacterium or an area of the substrate devoid of bacilli. 

When the laser illuminated a location free of bacteria, the SERS spectra and calibration curve 

in Figure 5 were obtained. The spectra in Figure 5a not only have features characteristic of 

the DSNB-based label, but also undergo intensity changes in-line with the amount of bacteria 

in the antigen solution. This trend is also evident in the calibration curve in Figure 5b. These 

data are another strong indicator for the presence of shed protein on the capture surface 

which, in turn, points to free protein in the whole cell solution. 

When the laser was focused on a single bacterium (Figure 6a), a weak, but distinct, 

spectrum is obtained (Figure 6b). While having a few bands indicative of the Raman reporter 

molecule, the spectrum also has a broad feature at 1600 cm-1, which we believe originates 

from the underlying microorganism (57). Upon characterizing 11 individual bacilli from 

capture substrates exposed to different MAP concentrations, the average intensity for 

νs(NO2) was only 170 ±11 cts/2 s.  
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There are two important conclusions that can be drawn from these results. First, 

captured bacteria appear to generate a SERS response after ERL labeling. Second, the 

response is much smaller than that observed when interrogating locations devoid of bacilli. In 

fact, the signal strength from an intact bacterium is on par with that from the blank spectra in 

Figure 5. These observations are consistent with the overlay of the two plots in Figure 4, and 

are again an indication that any captured whole cell MAP has, at best, a minor contribution to 

the SERS signal.  

Lastly, these samples were imaged by SEM in order to establish the location of the 

ERLs and bacteria on the capture substrate. The samples were therefore briefly rinsed with 

deionized water to remove salt residue, dried, sputter coated with gold, and imaged. Shown 

in Figure 7 are SEM images (~12×9 μm and ~4×3 μm) of a capture substrate that was 

exposed to 1.3×107 MAP/ml. A single bacterium, identified by its rod-like shape (~1×0.5 

μm), is evident in the center of both images. There are also several smaller, circular objects 

that have a size consistent with the 60-nm gold core of the ERLs. However, very few ERLs 

appear close enough to the microorganism to be irradiated by the laser when focused on the 

bacillus. Most of the nanoparticles are comparatively well removed from the bacillus. There 

were, however, very few nonspecifically bound ERLs (~15 in 100 μm2) on blank samples (0 

MAP/ml), and no visible bacteria. These findings further support the likelihood that shed 

protein is captured by the substrate and that the majority of the response for the whole cell 

MAP assay arises from ERLs bound to shed protein and not captured bacteria. 

In summary, studies yield three important conclusions: (1) there is shed protein on the 

assay surface, (2) the amount of protein increases as the original amount of bacteria in the 

solution increases, and (3) captured, shed protein can bind ERLs. The implications of these 
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findings to assay performance and the fundamental detection mechanism are discussed in the 

next section. 

 

DISCUSSION 

 The work herein, which was designed to build on our assay for MAP sonicate from 

the companion paper (56), has demonstrated the apparent ability to quantitate heat-killed, 

whole cell MAP in fewer than 24 hours and at LODs of ~630 MAP/ml in PBS and ~740 

MAP/ml in whole milk. While we need to push performance to higher sensitivity to address 

the need for subclinical levels of detection, this work is our first step towards the creation of 

a platform for direct evaluation of bacteria levels in milk. Our approach has LODs that are 

comparable to that recently obtained (~500 CFU/mL) by Stratmann and coworkers, by 

applying a new peptide-mediated capture PCR method to  artificially contaminated milk (49), 

but our method may potentially be in a more easy-to-use format. 

We noted earlier, however, that the LOD for our MAP assay is a few orders of 

magnitude lower than theoretical expectations. The theoretical detection limit for this assay 

can be approximated by assuming the lowest level of detection corresponds to a single 

bacterium present in the laser spot. Since the surface area of the capture substrate is defined 

by its 3.2-mm diameter, and the laser has a diameter of 25 μm, one bacillus per laser spot 

equals 1.6×104 cells in the assay area. This number of bacteria, when placed in to a 20-µl 

sample droplet, translates to a detection limit of 8.2×105 cells/ml. The projected theoretical 

LOD is therefore over one thousand times greater than the experimentally determined LOD 

of ~700 MAP/ml. It is precisely this issue that triggered the investigations that confirmed the 

presence of the shed MMP targeted by the 13E1 mAb. 
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 The next question rests with the mechanistic origin of shed MMP. Is the protein 

secreted by the bacillus or is shedding induced by sample preparation? Other Mycobacteria, 

specifically M. bovis BCG, are known to release cell wall lipids (40). However, MAP2121c 

has no signal sequence to suggest secretion and has been previously shown to be associated 

with the cell membrane (2). It would nonetheless be invaluable to determine if live 

Mycobacteria shed protein. 

 We believe the observed shedding is caused by sample preparation, with the surface 

protein being stripped from the bacteria by agitation during heat treatment and/or antigen 

solution preparation. In fact, a recent study has shown that surface proteins can be readily 

detached from MAP by brief sonication (44). It is possible that the vortexing step in our 

sample preparation does exactly that. Nonetheless, shedding leads to an effective approach to 

signal amplification from individual cells, and we believe is central to the reported detection 

limits. 

 These results point to an intriguing new strategy to increase the sensitivity and 

specificity of various diagnostic tests by harnessing protein shedding. Since it is likely that 

other MAP proteins are also shed, an approach to enhance the specificity and sensitivity of a 

test for MAP could potentially be devised by the concurrent detection of multiple surface 

proteins. To this end, work to further evaluate the shedding process and extend the concept of 

multiple protein detection is currently underway. In addition, efforts to investigate the 

applicability of the concept to other bacteria as a general mechanism for signal amplification 

are planned.  

Another intriguing aspect of our MAP assay is its large linear dynamic range, which 

is at least five orders of magnitude on the log scale. Simple equilibrium models of two-site 
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immunoassays predict a linearity of only three orders of magnitude in antigen concentration 

(12). As discussed in work by Plowman et al. (39), larger dynamic ranges can arise by the 

existence of two different ligand-receptor interactions, for example, in the capture step. Thus, 

the breadth of the dynamic range would be larger than that typically predicted because the 

stronger interaction would dominate binding at the lower concentrations, followed by capture 

at the sites with the lower binding strength. Indeed, preliminary results that are based on the 

Plowman model for the MMP-13E1 interaction (i.e., one strong and one weak binding 

constant) begin to qualitatively extend the linear dynamic range by another two to three 

orders of magnitude. Work to fully model these findings is ongoing and will be reported 

elsewhere. 

 In conclusion, the performance of our heat-killed, whole cell MAP assay is dominated 

by the presence of shed surface protein. Due in part to this amplification, our assay allows for 

a rapid, selective, and sensitive test that can translate to complex sample matrices and thus 

possibly improve upon current diagnostic tests for Johne’s disease. In addition, the 

quantitative nature of this assay may enable further refinement in definitions of disease 

stages and progression. Finally, studies to detect MAP from fecal samples as well as 

monitoring MAP levels in controlled Johne’s disease herds are in progress. 
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FIGURES 

FIG. 1. Schematic of sandwich immunoassay for MAP bacilli and illustration of shed protein 
assay format. 
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FIG. 2. Spectra and calibration curve for MAP spiked PBS samples. (A) Spectra (vertically 
offset for clarity) with intensity in counts (cts) per 5 s and (B) corresponding calibration 
curve using νs(NO2) intensity. Dashed line corresponds to the blank plus three times its 
standard deviation. Best fit line is y=913x-1568, R2=0.98. 
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FIG. 3. Calibration curve for whole cell MAP in a milk matrix. Same trend as observed in 
FIG. 2  (1 s integration, y=281x-395, R2=0.95) with increasing SERS intensity with 
increasing MAP in the antigen solution. Dashed line corresponds to the blank plus three 
times its standard deviation. 
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FIG. 4. SERS intensity of whole cell MAP solutions compared to supernatant of these 
solutions after bacteria have been pelleted out. The points from the two assays, whole cell 
MAP and supernatant without MAP, coincide. Dashed line corresponds to the blank plus 
three times its standard deviation. 
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FIG. 5. (A) Spectra vertically offset for clarity and (B) corresponding calibration curve from 
Raman microscope measurements of areas between bacteria on the assay substrate. Signals 
from areas devoid of bacteria increased with increased MAP in the antigen solution 
indicating that ERLs were specifically bound to the substrate surface. Dashed line 
corresponds to the blank plus three times its standard deviation. 
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FIG. 6. (A) Laser spot from 100× objective over a single bacterium and (B) SERS spectrum 
from the single bacterium with bound ERLs obtained with the Raman microscope. The 
bacterium had a SERS spectrum containing the distinct spectra features of the DSNB-derived 
Raman reporter indicating that ERLs were also bound to the bacteria. 
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FIG. 7. SEM images of an assay platform exposed to 1.3×107 MAP/mL and 60-nm ERLs 
with (A) bacterium in the center and (B) and expanded area from box in (A).  Results 
visually confirm spectroscopy measurements in FIG. 5 and 6. 
 

 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 



www.manaraa.com

 
85 

CHAPTER 4: Resonant Raman Labels for Improved Surface-Enhanced 

Raman Scattering Heterogeneous Immunoassays 

Betsy Jean Yakesa,b, Jeremy Driskellc, Robert J. Lipert1, and Marc D. Portera,b 

 

a Departments of Chemistry and Chemical and Biological Engineering, Ames Laboratory-USDOE, 
and Institute for Combinatorial Discovery, Iowa State University, Ames, IA 50011 

 

b Biodesign Institute – Center for Combinatorial Sciences and Department of Chemistry and 
Biochemistry, Arizona State University, Tempe, AZ 85287-6401 

 
c Department of Chemistry, University of Georgia, Athens, GA 30602-2556 

 
A paper to be submitted to Analytica Chimica Acta 

 

ABSTRACT 

Assays based on surface-enhanced Raman scattering (SERS) as a readout tool have 

recently begun to incorporate the resonance Raman effect. By integrating this concept of 

surface-enhanced resonance Raman scattering (SERRS) into a heterogeneous immunoassay 

platform, stronger signals can be realized that may also lead to lower levels of detection. This 

paper therefore focuses on incorporating organic dyes as reporter molecules that are tethered 

to 60-nm colloidal gold which is also coated with antibodies. When performing assay 

comparisons, resonant molecules (i.e., Alexa Fluor 647, 5-(and-6)-

carboxynaphthofluorescein, and Cy5, and malachite green isothiocyanate) yield signal 

enhancements of ~100 to 350 times compared to the nonresonant 5, 5’-dithiobis 

(succinimidyl-2-nitrobenzoate), which is used as a reference. This paper details the 

development of stable colloidal gold suspensions through the optimization of labeling 

reactions and pH, presents SERRS spectra for four resonant dyes, and examines the 

immunoassay performance with respect to detection limits and nonspecific adsorption. 
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INTRODUCTION 

 The importance of biomolecule detection is undergoing a nearly explosive growth in 

clinical, environmental, agricultural, and defense arenas.[1] The motivation behind this 

emerging emphasis reflects, in part, the role of rapid, cost-effective, sensitive, and selective 

immunoassays as applied to early disease detection and homeland security. One detection 

technique that has attributes in tune with these needs is surface-enhanced Raman scattering 

(SERS). In SERS, incident electromagnetic radiation couples with the surface plasmon 

oscillation of a roughened metal surface and an adsorbed Raman active molecule. SERS was 

first observed in 1974 by Fleischmann and coworkers,[2] but not fully recognized until 1977 

by Jeamarie and Van Duyne[3] and by Albrecht and Creighton.[4] SERS relies on a 

combination of chemical[5-7] and electromagnetic[8-10] enhancement effects that combine 

to yield signals up to 1014 times larger than normal Raman scattering.[11] 

SERS as a readout tool for immunoassays has several notable attributes that make it a 

potentially attractive alternative to traditional techniques such as colorimetry, radioisotope 

decay, and fluorescence.[8,12,13] First, SERS intensities have been shown to rival that of 

fluorescence while having much narrower bands. This advantage allows for sensitive 

(pico/femtomolar)[14] biolyte detection while enabling multiplexed detection[13] due to less 

spectral overlap. In addition, Raman scattering is a versatile technique that has minimal 

fluorophore photobleaching, since the excitation state has an extremely short lifetime. This 
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excitation wavelength is substrate but not scattering molecule dependent, so a single 

excitation source can be used.[15] Finally, SERS is a robust readout method that is 

unaffected by the surrounding environment (e.g., quenchers, pH, ionic strength) which then 

allows for a more reproducible signal intensity. 

In an attempt to obtain stronger SERS signals and, by extension, possibly even higher 

sensitivities, approaches based on surface-enhanced resonant Raman scattering (SERRS) 

have begun to appear.[16-25] This phenomenon occurs when an immobilized Raman active 

molecule has an electronic transition that is in resonance with the excitation photon. This 

condition leads to the higher adsorption of the incident energy, a larger probability for 

scattering, and, therefore, larger signal intensities.[26]  

 Based on these attributes, SERRS has begun to gain popularity as a readout method in 

immunoassays and gene detection assays. Mirkin and colleagues[17,18,25] have prepared 

silver coated-gold nanoparticle probes that contain a Raman dye for SERRS detection of 

oligonucleotides and proteins. By selectively tagging DNA with a SERRS active molecule, 

Vo-Dinh and coworkers[19] have performed gene diagnostics through hybridization of the 

probes to complementary DNA-coated, silver chips. Graham and coworkers have reported 

the SERS-based detection of tagged PCR products[23] and dye-labeled oligonucleotides via 

silver nanoparticles.[21] In conjunction with that work, they have also developed 

benzotriazole dye-silver nanoparticle conjugation chemistry.[22] Advances in colloidal 

stability have been achieved by Natan and colleagues[24] through glass-coated, reporter 

encased, metal nanoparticles that are then used in bioassays. Furthermore, Nie and coworkers 

[16,20] have also used a silica shell – dye embedded, nanoparticle core approach for 

detection of cancer markers. 
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While demonstrating the strengths of using SERRS, many of the above methods do 

not optimally position the dye on the enhancing substrate. Minimizing the distance between 

the SERS surface and the reporter is essential because the electromagnetic SERS 

enhancement decays rapidly with respect to the distance, d, from the substrate (i.e., d-10 or d-

12)[9,27]. Furthermore, when the dye is directly adsorbed on the nanoparticle, methods to 

stabilize the colloid against aggregation (i.e. silica encapsulation) are necessary. This paper 

seeks to address both challenges through investigating covalently attached dye molecules on 

a gold surface in an attempt to increase SERRS signals without any post-formation 

stabilization steps. These stabilized labels will then be incorporated into an immunoassay in 

order to determine the enhancement achieved. 

As part of our interests in this area, we have used variants of the platform shown in 

Figure 1 for the detection of small proteins[13,28], cancer markers[14], viruses[29,30], 

bacteria[31-33], and spores[33]. For the work herein, the two site, heterogeneous 

immunoassay begins, as shown, by coupling mouse-IgG antibody to the adsorbed thiolate of 

dithiobis(succinimidyl propionate) (DSP) through succinimidyl ester chemistry. When the 

respective antigen is present, the capture substrate will selectively extract mouse-IgG from 

solution. After a rinse step, the substrate is exposed to a solution of extrinsic Raman labels 

(ERLs) which selectively label the captured antigen. In this case, the ERLs are formed by 

adsorbing anti-mouse IgG to a portion of the gold nanoparitcle surface and then coating the 

remaining gold surface with the Raman reporter molecule. 

As few studies have focused on comparing SERRS immunoassays with their 

nonresonant counterpart via changing only the molecular label, four commercially available 

organic dyes that have excitation maxima near resonance with the HeNe laser wavelength 
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(632.8 nm) will be compared with our well-characterized, nonresonant label 5,5’-dithiobis 

(succinimidyl-2-nitrobenzoate) (DSNB). The resonant molecules, given in Table 1, were 

chosen to represent the diversity of commercially available dyes. As such, multiple 

functional groups (i.e., succinimidyl ester or isothiocyanate) and charge states (i.e., net 

positive or negative charge) were tested. This work details the development of stable 

resonant dye ERLs without the need for post-formation modification procedures, integrates 

the four resonant and one nonresonant (DSNB) label into an immunoassay, and evaluates the 

performance of the resonant ERLs versus the DSNB ERLs. 

 

EXPERIMENTAL 

2.1. Chemicals and Reagents  

Colloidal, 60-nm gold nanoparticles (2.6 x 1010 particles/mL, <8% variation in 

diameter), were purchased from Ted Pella (Redding, CA). ImmunoPure® mouse IgG and 

ImmunoPure® Goat anti-mouse IgG (minimum cross reactivity with human, bovine, and 

horse serum proteins) were obtained from Pierce Biotechnology (Rockford, IL). Porcine 

parvovirus (PPV, 6.4 × 106 TCID50/10 mL of 10 mM PBS) and PPV antibody (~1.4 mg/mL 

in 50 mM borate buffer) were provided by the National Animal Disease Center (Ames, IA). 

Bovine serum albumin (BSA), 2-aminoethanethiol (AET), octadecanethiol (ODT), 

dithiobis(succinimidyl propionate) (DSP), and sodium chloride were procured from Sigma-

Aldrich (St. Louis, MO). 

For preparation of template stripped gold (TSG), silicon wafers (4-in, p-type, [111] 

test grade wafer) were obtained from University Wafer (South Boston, MA), Epo-tek 377 
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part A and B epoxy was supplied by Epo-tek (Billerica, MA), and poly(dimethylsiloxane) 

(PDMS) was purchased from Dow Corning (Midland, MI). 

The nonresonant Raman label (DSNB) was synthesized according to our previous 

procedure.[14] Resonant Raman dyes were purchased from Molecular Probes (malachite 

green isothiocyanate (M689), Alexa Fluor® 647 carboxylic acid, succinimidyl ester (AF647), 

and 5-(and-6)-carboxynaphthofluorescein, succinimidyl ester (CNF); Carlsbad, CA) or 

Amersham Biosciences (Cy5 Mono NHS ester (Cy5); Piscataway, NJ).  

Distilled water, subsequently deionized with a Millipore Milli-Q system (18 MΩ, 

Billerica, MA), was used for the preparation of all aqueous reagents and buffers. Ethanol was 

acquired from Aaper (Shelbyville, KY). Acetonitrile was procured from Fisher (Pittsburgh, 

PA). Borate buffer powder packs (50 mM, pH 8.3) were purchased from Pierce while 

phosphate buffered saline powder packs (PBS, 10 mM, pH 7.4) were obtained from Sigma-

Aldrich; both were diluted as needed. SuperBlock was obtained from Pierce. 

Buffers were prepared according to standard protocol with PBS used for pH 7-7.5, 

borate buffer for pH 8-9, sodium tetraborate decahydrate (certified ACS, Fisher) buffer for 

pH 9.5-10, and sodium carbonate (Fisher) buffer for pH 10.5-11. An Orion model 520A pH 

meter (Boston, MA), calibrated with pH 7.00 and 10.00 standards, was used for all 

measurements with slight pH adjustments made by addition of aqueous sodium hydroxide 

(certified ACS, Fisher) or sulfuric acid (ACS grade, EMD Chemicals, Gibbstown, NJ). 

 

2.2. Thiol Modification of the Dyes  

To direct the immobilization of the dyes to the gold nanoparticles, AET was used to 

convert the succinimidyl ester terminated compounds (Cy5, AF647, CNF) or isothiocyanate 
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molecules (M689) to thiols or thioureas, respectively, as shown in Figure 2.[34] For these 

reactions, Cy5 was dissolved in water while all other dyes used DMSO; the resulting 

concentrations spanned 0.2 to 1 mM. AET was selected as the tethering molecule since its 

two-carbon chain minimizes the gap between the surface of the gold nanoparticle and label. 

For these reactions, one mole of dye was mixed with 0.9 moles of AET for ~90 min. Once 

prepared, the thiol-modified dye solutions were stored in the dark at 4°C and could be used 

for six months with no observable decrease in Raman signal. We note that the slight excess 

dye molecules proved important, as the presence of unreacted AET destabilized the 

nanoparticle suspension.  

 

2.3. Extrinsic Raman Label (ERL) Preparation 

Labeling procedures to determine optimum conditions for nanoparticle stability were 

studied, and the outcomes of the investigations are presented in the Results section. Briefly, 

the six labeling methods tested are summarized in Table 2. All nanoparticle solutions 

consisted of 500 μL of 60-nm colloidal gold mixed with 20 μL of 50 mM borate buffer. The 

AF647 and AF647-AET solutions had a final concentration of 0.2 mM in DMSO. Method 1 

is our standard ERL preparation in which the nanoparticles were reacted with 5 μL of DSNB 

(8 h incubation) followed by 10 μL of Ab (14 h incubation). Method 2 consisted of: (1) 3.5 

μL of 1 mg/mL AF647 in DMSO reacting with 50 μL of PPV Ab in borate buffer for 1 h; 

and (2) adding 10 μL of the antibody-AF647 solution to the suspension. Methods 3 and 4 

started by absorbing 10 μL of Ab to the nanoparticles (8 h) and were followed by reacting 

either 5 μL of AF647 or 5 μL of AET-coupled AF647 for 14 h. Methods 5 and 6 reversed 
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Methods 3 and 4 by incubating AF647 or AF647-AET for 8 h and then adding antibody (14 

h).  

From this and other studies discussed in more detail in the Results section, an 

optimum labeling procedure was determined to consist of first adding 1 mL of 60-nm 

particles to a centrifuge vial and buffering the solution with 40 μL of 50 mM borate buffer 

(pH 8.3) or 200 μL of 10 mM sodium borate buffer (pH 9.5). To this solution, 11.1 µL of 

anti-mouse IgG (1.8 mg/mL) were added and incubated for 7 h. After adsorbing the antibody, 

20 μL of 1 mM reporter solution (DSNB in acetonitrile; Cy5-AET in water; or AF647-AET, 

CNF-AET, M689-AET in DMSO) were reacted for ~14 h. This process formed a gold-bound 

thiolate between the nanoparticles and Raman scatterers. Finally, 100 μL of a 10% BSA in 2 

mM borate buffer were added to the solution in order to minimize nonspecific binding.  

In order to remove excess, reagents, the mixture was first centrifuged at 2,000g for 10 

min (Eppendorf MiniSpin, Westbury, NY). Next, the supernatant solution was removed, and 

the loose ERL pellet was resuspended in 1000 µL of 2 mM borate buffer with 1% BSA. This 

process was repeated three times with the final resuspension in 500 µL. Finally, 50 µL of 

10% NaCl were added to the colloidal suspension to match biological conditions, and the 

solution was filtered through a 0.22-µm syringe filter (Costar, Fisher) in order to remove 

large clusters of nanoparticles.  

 

2.4. Capture Substrate Preparation 

The substrate platform and immunoassay protocol have been reported 

previously.[13,14,29,33] Briefly, gold templates were prepared by resistively evaporating 

99.9% pure gold (~300 nm, 0.1 to 0.2 nm/s rate) onto a silicon wafer using an Edwards 306A 
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evaporator (Wilmington, MA). Clean 1×1 cm glass slides were affixed to the gold surface by 

Epo-tek 377 part A and B epoxy and cured at 150°C for 1.75 h. The resulting template 

stripped gold (TSG) slides were then gently removed from the wafer. The freshly exposed 

TSG surface was then stamped with an ODT-soaked PDMS stamp that contained a 3.2-mm 

diameter centered hole. This process forms a hydrophobic barrier surrounding the 3.2-mm 

assay area. TSG was then exposed to 1 mM, ethanolic DSP for 14 h and subsequently to 20 

μL of anti-mouse IgG (100 μg/mL, 7 h) thus forming an amide linkage through the 

succinimidyl esters of the DSP and primary amines on the antibody. The substrates were then 

rinsed with 2 mL of 10 mM PBS buffer, and the unreacted succinimidyl endgroups of the 

DSP-derived monolayer were blocked with SuperBlock overnight. 

 

2.5. Immunoassay Procedure 

Capture substrates were exposed to varying concentrations of mouse IgG in 10 mM 

PBS buffer (pH 7.4) for 6 h (room temperature) in a humidity chamber. After rinsing three 

times with 2 mM borate buffer (pH 8.3) with 150 mM NaCl, the ERLs were added and 

allowed to react ~14 h. Finally, the substrates were rinsed with the same borate buffer and 

gently dried under a stream of nitrogen.  

 

2.6. UV-Vis Spectroscopy 

UV-Visible transmission spectra of nanoparticle solutions were collected using a 

Hewlett-Packard model 8435 spectrophotometer. The pathlength of the quartz cuvette was 

1.0 cm. The sample cell was rinsed twice with deionized water and dried between 

measurements. The reference solution consisted of 2 mM borate buffer and 1% BSA. 



www.manaraa.com

 
94 

 

2.7. Zeta Potential Measurements 

A Malvern ZetaSizer Nano Z (Southboro, MA) was used to correlate the zeta 

potential of the ERLs and colloidal stability. The instrument was calibrated with the Malvern 

Zeta transfer solution, and the -46.1 mV result was within the accepted -50±5 mV range. 

ERLs were prepared following the standard procedure, including centrifugation and 

resuspension, but without salt addition and filtration. Three replicate measurements at 25°C 

were performed in all cases. Between samples, the cell was rinsed five times with deionized 

water (5 mL per wash). By measuring the electrophoretic mobility of the particles, the zeta 

potential can be calculated by the Henry equation and the Smoluchowski approximation.[35] 

 

2.8. SERS Instrument 

SERS spectra for the immunoassay were collected using a NanoRamanTMI 

(Concurrent Analytical, Waimanalo, HI). This instrument consists of a HeNe laser (632.8 

nm, 30 mW, 491 µm2 spot size), fiber-optic-based probe head, thermoelectrically cooled 

CCD (Kodak 0401 E, 0°C), and an f/2.0 Czerny-Turner imaging spectrometer (6-8 cm-1 

resolution). Normal incident laser light was focused onto the substrate surface with a 0.68 

numerical objective that also collected the scattered radiation. Exposure times were 1-s for 

DSNB and 0.2-s for the dye-labeled nanoparticles, and spectral data were evaluated with the 

TRCommander 1.3.0 software. Spectra were baseline corrected with Omnic 6.2 (Thermo 

Electron Corporation) software to remove the continuum underneath Raman lines.[36] 
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RESULTS AND DISCUSSION 

3.1. Preparation of ERLs 

The Raman reporter molecule, DSNB, was used to prepare ERLs that served as a 

comparative standard. This nonresonant molecule chemisorbs to the gold surface through 

cleavage of the disulfide bond and subsequent formation of a gold-bound thiolate. Since the 

dye reporter molecules do not have a functional group for direct binding to the gold surface, 

methods to allow both the Abs and the reporter molecule to adsorb to the nanoparticles were 

investigated. In addition, the order of adding Abs and reporter molecules was investigated to 

determine the optimum ERL formation procedure with respect to stability and SERS signal 

intensity. 

Six labeling methods were compared and are outlined in Table 2. For these studies, 

PPV antibody and PPV (a nonenveloped, 25-nm virus) were used in place of anti-mouse and 

mouse IgG, but the immunoassay protocol remained the same. This study asked three 

fundamental questions: (1) Is it possible to label the antibody with the dye molecule prior to 

being added to the nanoparticles (Method 2) and obtain a SERS signal, (2) Does the dye have 

to be preconjugated with AET in order to react with the nanoparticles (Method 3 compared 

with Method 4 (i.e. Methods 3/4) and Methods 5/6), and (3) What order of addition of Ab 

and dye yields stable ERLs and large SERS signals (Methods 3/5 and Methods 4/6)? Method 

1 represents the DSNB labeled nanoparticles as a standard solution.  

Following Steps 1 and 2, BSA blocking, centrifugation/resuspension, and NaCl 

additions were all performed, and the UV-Vis spectra of the ERL solutions were recorded. 

All ERLs, except for Method 5, were red in color and had a single UV-Vis band at ~538 nm. 

These characteristics indicate that the nanoparticles were not detectably aggregated. 
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However, the ERLs from Method 5 (AF647 and then Ab) were aggregated as indicated by the 

purple color, and the presence of two UV-Vis bands (528 and 575 nm). These data indicate 

that if the dye is added in Step 1, it must first be reacted with the AET in order to avoid 

particle instability. 

The stable nanoparticles were then filtered and used in an immunoassay with PPV 

(6.4 × 106 TCID50/mL). Each SERS spectra were evaluated to determine if bands 

characteristic of the reporter were visible. As expected, the DSNB standard ERLs yielded 

bands attributable to the reporter molecule, as will be discussed later.[29] In addition, the 

particles modified by Methods 4 and 6 have bands representative of AF647, whereas those 

derived by Methods 2 and 3 had no visible bands. These results indicate that: (1) labeling the 

antibody prior to addition to nanoparticles does not yield a SERS signal; and (2) when 

AF647 was not coupled to AET, no SERS spectrum was observed. These results can be 

attributed to the SERS scatterer being too removed from the nanoparticle for the former and 

the dye molecule not adhering to the nanoparticle in the latter. Furthermore, the ERLs formed 

by Method 4 (Ab then AF647-AET) had larger SERS signals and were more stable over time 

than those formed by Method 6 (AF647-AET then Ab) 

In conclusion, stable ERLs can be formed when antibody is first adsorbed to the 

colloidal gold surface through ionic and hydrophobic interactions and then thiol terminated 

dye (AF647-AET) is chemisorbed to the gold nanoparticle surface. As a result, the following 

experiments used particles modified by Method 4. 
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3.2. Stabilization of ERLs Coated with Positively Charged Dyes 

As previously demonstrated,[37] gold nanoparticles formed by citrate reduction have 

a net negative surface charge which plays a key role in colloidal stability. Upon applying 

Method 4 and using the positively charged M689-AET molecule, the nanoparticles 

aggregated. This observation can be attributed to the adsorbed cations disrupting the stability 

of the suspension as the repulsive, negative interparticle interactions were reduced. This 

description can be theoretically predicted by the Derjaguin-Landau-Vervey-Overbeek 

(DLVO) theory.[38,39] This aggregation has previously been evaluated with positively 

charged indolenine cyanine dyes.[40] Specifically, when these cationic molecules reacted 

with negatively charged gold nanoparticles, electrostatic dye-particle interactions occurred 

and J-aggregated bridged assemblies formed due to π-π interactions. These interactions may 

also be occurring with M689-AET. In order to possibly counteract the positive charge of the 

dye and decrease aggregation, the nanoparticle solutions were made more basic with buffers.  

As such, nanoparticles were conjugated with anti-mouse IgG and buffered to the 

desired pH (7-7.5 with 200 μL of 10 mM PBS, 8-9 with 20 μL of 50 mM borate buffer, 9.5-

10 with 200 μL of 10 mM borate buffer, and 10.5-11 with 20 μL of 50 mM carbonate buffer). 

Following Method 2, M689-AET was then reacted for 5 h. Finally, UV-Vis spectra of the 

solutions were obtained, and the results are shown in Figure 3. As previously 

demonstrated,[29,41,42] a single band at ~535 nm is indicative of a colloidal solution 

composed of isolated 60-nm gold particles, while band broadening or splitting as well as 

shifting to longer wavelengths is diagnostic of aggregate formation. At pH 7.5, the band is 

split. Upon buffering at pH 10.5, a single feature at ~535 nm is obtained. At pH 9, an 

intermediate spectrum is obtained with features indicative of particle aggregation. These 
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results, as well as the spectra from the other pH values tested, indicated that a stable 

nanoparticle suspension is achieved with positive dyes when the pH≥9.5. Because high pH 

values can denature antibodies and lower their binding affinity[43] as well as decrease the 

number of IgG molecules adsorbed to the gold surface,[44] the lowest pH that allowed for 

stable nanoparticles (pH 9.5) was chosen for the remainding studies involving M689-AET 

ERLs. 

The ERLs were also characterized by zeta potential measurements. The zeta potential, 

which is the potential at the slipping plane of a particle, can be used to determine the charge 

of the particles as well as the stability of the colloidal suspension. Upon taking measurements 

with each type of ERL, the data in Figure 4 were obtained. These data indicate that the ERLs 

are all negatively charged and at a comparable magnitude. From this, we speculate that the 

ERLs charge is dominated by the antibody coated nanoparticles and are stable as the pH is 

above the antibody pI (6.6-7.2, [45]). 

 

3.3. Mouse-IgG Immunoassay Spectra and Calibration Curves 

Immunoassays were first performed with the nonresonant DSNB as a label to obtain a 

comparative performance metric. The results of the heterogeneous, two-site immunoassay for 

mouse IgG concentrations ranging from 0.01 to 1000 ng/mL are shown in Figure 5. As 

evident, the representative SERS spectra in Figure 5a, which were obtained at 1-s integration 

times, have characteristics of the DSNB-derived monolayer. The strongest band in each 

spectrum (1336 cm-1) is attributed to a symmetric nitro stretch (νs (NO2)), while the less 

intense feature (1588 cm-1) is associated with an aromatic ring mode. In addition, other 

features are indicative of the DSNB-modified ERLs including a nitro scissoring vibration at 
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851 cm-1 and a succinimidyl N-C-O stretch overlapping with an aromatic ring mode at ~1075 

cm-1.[14] Moreover, as the amount of antigen in solution increases, the intensity of all 

spectral features also increase, demonstrating a corresponding increase in the number of 

ERLs bound to the surface. By plotting the intensity of νs (NO2) versus the log of the antigen 

concentration, the calibration curve in Figure 5b is obtained. As expected, this curve has the 

characteristic shape and approximately three orders of linear magnitude associated with 

equilibrium models of a two-site assay.[43] 

After performing the DSNB ERL immunoassay, the dye-AET ERLs were tested using 

the same assay platform. The SERS spectra for each reporter molecule, taken at 0.1 ng/mL 

mouse IgG and baseline corrected, are shown in Figure 6a. Each reporter has a distinct 

Raman spectral signature, but Cy5 and AF647 have comparable features which can be 

attributed to the similarity of these fluorophores. While the spectra taken of the dye molecule 

ERLs used an integration time of 0.2 s, spectral features for the nonresonant DSNB ERL are 

comparatively weaker even though collected at an exposure time of 1-s, indicating that 

indeed the resonant labels are stronger SERS scatters. 

Upon plotting the intensity for the bands labeled by stars in Figure 6a versus the log 

of the antigen solution concentration, the calibrations curves in Figure 6b are obtained. These 

bands are chosen because of their high SERS intensity and lack of overlapping bands. In this 

format, SERS spectra were normalized to 1-s integration times, and it is clear that the signals 

for the dye molecules far surpass those of the nonresonant DSNB at each antigen 

concentration. In addition, the dye molecule assays qualitatively follow the characteristic 

concentration-dependent signal with larger SERS intensities from higher mouse IgG 

concentrations. 
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3.4. Enhancement of Resonant Raman Labels Over Nonresonant DSNB 

In order to more fully investigate the performance of the resonant molecules, 

enhancement factors and limits of detection were determined. To evaluate the enhancement 

factor, the calibration curves for the dye molecules versus DSNB were compared. Through 

plotting intensity versus the antigen solution concentration, a calibration curve can be 

obtained and a linear trend established. An example of this is shown in Figure 7a for DSNB 

and Figure 7b for Cy5. By comparing the slopes of the best-fit lines between 0.01 ng/mL and 

0.1 ng/mL, relative enhancement factors can be determined. In this example, the slope of the 

Cy5-AET coated ERL is just over 300 times greater than that for the DSNB modified ERL.  

The limit of detection (LOD) is the lowest antigen concentration expected to produce 

a SERS signal distinct from the blank. The dashed line in each curve represents this signal 

and is calculated from the signal of blank plus three times the standard deviation in the blank 

signal. From this, the LOD can be determined from the intersection of the best-fit line with 

the dashed line in each calibration curve. Numerically, the intersection is at 46 pg/mL for 

DSNB and 24 pg/mL for Cy5, which corresponds to approximately 200 fM of mouse IgG. 

The results of this analysis for all the ERLs are summarized in Table 3. Each resonant 

reporter yields an enhanced SERS signal that is approximately two orders of magnitude over 

that of DSNB. The limit of detection, however, is not significantly improved for the resonant 

dyes. At a first pass, one can speculate that if a signal is two orders of magnitude higher, then 

the LOD of would be one hundred times improved if the blank signal for each system was of 

the same magnitude and standard deviation. However, the improvement in signal strength 

also applies to the ERLs that are present in the blank from nonspecific adsorption. Thus, 
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while the Cy5-AET ERL has 300 times the signal of the DSNB ERL, the blank is also 300 

times stronger.  

From this, it can be concluded that while resonant molecules do yield much stronger 

signals, the LODs are dominated not by reporter signal strength but by nonspecific 

adsorption. In order to take advantage of the enhanced signals resonant labels offer, 

nonspecific adsorption must be minimized to the point where the blank signal is truly blank 

and dominated only by instrument noise and sample variability. 

 

CONCLUSIONS 

 Increased signal intensities during detection hold promise for creating more sensitive 

assays. In SERS-readout assays, one technique to improve signals is to achieve resonant 

conditions with the Raman active molecule. In our system, ERLs can be used to integrate dye 

molecules that have an adsorption band in tune with the laser wavelength (~633 nm). By 

adapting current methods for forming ERLs, specifically conjugation order and solution pH, 

stable and nonaggregated SERS labels can be obtained for both positive and negatively 

charged resonant dye molecules. The resonant labeled ERLs behaved similarly to the 

standard DSNB reporter as indicated by the calibration curves. In addition, enhancement 

factors for the resonant molecules were determined to be on the order of two magnitudes 

over the nonresonant DSNB, but limits of detection did not show the same improvements due 

to nonspecific adsorption. Studies to improve upon current protocols with respect to 

nonspecific binding are currently underway in order fully realize the potential of the resonant 

molecule labeled ERLs. 
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FIGURES 

Fig. 1. Formation of ERLs and heterogeneous immunoassay procedure. 
 
Table 1. Reporter names, acronyms, spectral characteristics, and molecular charges. 
 
Fig. 2. Reactive endgroup formation. 
 
Table 2. ERL labeling strategies. 
 
Fig. 3. ERL stabilization: UV-Vis spectra of ERLs, containing α-mouse IgG and M689-AET, 
buffered to varying pH values. 
 
Fig. 4. Zeta potential measurements of ERLs showing similar charges and stability for each 
nanoparticle/dye-AET combination. 
 
Fig. 5. Mouse IgG immunoassay with DSNB reporter: (a) spectra for individual antigen 
concentrations (1-s integration, offset for visual clarity) and (b) corresponding calibration 
curve with each data point an average of five measurements per slide. 
 
Fig. 6. Mouse IgG immunoassay for all reporters: (a) representative spectra for each reporter 
at an antigen concentration of 0.1 ng/mL, integration times as listed (offset and baseline 
corrected for visual clarity) and (b) corresponding calibration curves for low concentration 
antigen solutions. All dye molecules were in the dye-AET reacted form. 
 
Fig. 7. Calibration curve for mouse IgG immunoassay, lower concentration ranges for (a) 
DSNB and (b) Cy5-AET form. Average of five measurements per slide and dashed lines 
indicating the level of detection based on blank + 3σ of blank. 
 
Table 3. Enhancement (normalized to DSNB) and limit of detection (LOD, pg/mL) as 
determined from the intersection of the slope of the best-fit line (between 0.01 and 0.1 
ng/mL) and the (blank+3σ) level for each reporter tested. All dye molecules were in the dye-
AET reacted form. 
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Fig. 1. 
 

 
 

(A) Preparation of Extrinsic Raman Labels (ERLs)
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Table 1. 
 

Negative2672602CNF5-(and 6-) carboxynaphthofluorescein, SE

PositiveNone629M689Malachite green isothiocyanate

1665650AF647Alexa Fluor 647 SE

Negative664646Cy5Cy5 monofunctional, succinimidyl ester 
(SE)

Neutral400320DSNBDithiobis (succinimidyl nitrobenzoate)

ChargeEm Max 
(nm)

Ex Max 
(nm)

Abbrev.Molecule Name

Negative2672602CNF5-(and 6-) carboxynaphthofluorescein, SE

PositiveNone629M689Malachite green isothiocyanate

1665650AF647Alexa Fluor 647 SE

Negative664646Cy5Cy5 monofunctional, succinimidyl ester 
(SE)

Neutral400320DSNBDithiobis (succinimidyl nitrobenzoate)

ChargeEm Max 
(nm)

Ex Max 
(nm)

Abbrev.Molecule Name

1 No structure available for Alexa Fluor
2 CNF has a pKa of 7.6  
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Fig. 2. 
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Table 2. 
 
 
 
 
 

1 nanoparticle solutions (nps)

Add AbReact nps with AF647-AET6

Add AbReact nps with AF6475

Add AF647-AETAdsorb Ab to nps4

Add AF647Adsorb Ab to nps3

Add 10 µL of Step 1 to npsReact Ab with AF6472

Add AbReact nps1 with DSNB1

Step 2Step 1Method

Add AbReact nps with AF647-AET6

Add AbReact nps with AF6475

Add AF647-AETAdsorb Ab to nps4

Add AF647Adsorb Ab to nps3

Add 10 µL of Step 1 to npsReact Ab with AF6472

Add AbReact nps1 with DSNB1

Step 2Step 1Method
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Fig. 3. 
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Fig. 4. 
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Fig. 5. 
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Fig. 6. 
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Fig. 7. 
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Table 3. 
 
 
 
 
 
 
 
 
 
 

27107CNF

24212AF647

24305Cy5

35346M689

461DSNB

LOD (pg/mL)EnhancementReporter

27107CNF

24212AF647

24305Cy5

35346M689

461DSNB

LOD (pg/mL)EnhancementReporter
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ABSTRACT 

Electrochemically modulated liquid chromatography (EMLC) manipulates analyte 

retention by changing the potential applied (Eapp) to a conductive stationary phase. This paper 

applies EMLC to the separation of triazines, a commonly used, but environmentally 

hazardous, class of herbicides. Experiments herein examine the influence of mobile phase pH 

on retention, in combination with tuning Eapp, to take advantage of the ionizablity of the 

triazine ring nitrogen. Results discussed include: (1) the merits of using EMLC to separate 

this class of compounds; (2) the retention mechanism for triazines of dissimilar acid 

strengths; and (3) the rapid separation of a seven-component triazine mixture. 

 

Keywords: electrochemically modulated liquid chromatography; potential control; 

herbicides; triazines; pH 

 

 



www.manaraa.com

 
116 

INTRODUCTION 

Electrochemically modulated liquid chromatography (EMLC) combines liquid 

chromatography and electrochemistry as a unique approach to manipulate retention. In 

EMLC, a three-electrode electrochemical cell is reconfigured to simultaneously function as 

an HPLC column (Figure 1). In most cases, EMLC columns are packed with porous graphitic 

carbon (PGC) which serves both as a conductive stationary phase and as a working electrode. 

As a result, retention can be fine tuned by changes in the potential applied (Eapp) to the 

column, adding another dimension to LC separations. 

 Several laboratories,[1-11] including our own,[12-27] have investigated a wide range 

of separations with EMLC. To date, EMLC has been applied to the separation of aromatic 

sulfonates,[13] monosubstituted benzenes,[17] pyridines/anilines,[20] corticosteroids,[14] 

benzodiazepines,[15,18] optical isomers,[19] short-chain carboxylic acids,[3] metal-ion 

complexes,[10] inorganic anions,[26] and amino acids.[2,23] This paper extends this list to 

include herbicides, while also exploring the integration of EMLC and pH-modified mobile 

phases. 

One of the driving forces behind agrochemical research is the need for effective, low-

cost weed control using compounds which are environmentally benign. The s-triazines are a 

class of compounds that have been used for over forty years to control broadleaf and grassy 

weeds through disruption of photosynthesis pathways.[28] These molecules, as shown in 

Table 1, are based on a six-membered ring with nitrogen and carbon atoms linked by 

alternating single and double bonds. s-Triazines can also be grouped into subclasses based on 

their substituents: (1) atrazine, propazine and simazine are chloro-s-triazines; (2) prometon is 

a methoxy-s-triazine; and (3) ametryn, prometryn and terbutryn are methylthio-s-traizines. 



www.manaraa.com

 
117 

The chlorinated triazines and their metabolites are, unfortunately, associated with possible 

cancer risks in humans and tumor incidence in animals,[29] and the methylthio-s-triazines 

are potentially toxic to aquatic organisms. As a consequence, the United States 

Environmental Protection Agency instituted a Special Review in 1994 that called for more 

research into the long-term environmental effects and metabolite degradation of these 

compounds.[30] 

While the gas chromatographic analysis of triazines is commonplace,[31] the polarity 

and low volatility of these compounds often dictate the use of derivatization steps prior to 

separation.[32] With recent advances in packing materials, liquid chromatography can be 

readily applied to separate herbicides without derivatization.[33,34] Drawing on this 

capability, liquid chromatography studies on triazine herbicides and their metabolites[35-43] 

have focused on realizing rapid and efficient separations. In addition to the LC work, 

research on optimizing extraction of triazines from soil [37,38,40,41] and utilizing mass 

spectrometry to better evaluate degradation products is enabling better herbicide 

monitoring.[39] Despite the advantages of LC, the separations can still be challenged by low 

resolution, owing to the strong interactions of these polar compounds with many stationary 

phases. Moreover, the structural similarity of the triazines and their metabolites can often 

lead to overlapping of elution bands. 

It has recently been shown that a highly effective separation of s-triazine herbicides in 

capillary zone electrophoresis can be achieved by optimizing the pH of the running 

buffer.[44] This approach takes advantage of the basicity of the nitrogens on the s-triazine 

aromatic ring, which can be protonated to impart a net positive charge.[45] Table 1, which 

lists the compounds that will be examined herein, summarizes this chemistry. This paper 
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investigates the impact of varying the pH of the mobile phase, as well as Eapp, on the 

separation of a mixture of s-triazines. These separations will employ a PGC stationary phase, 

which is stable between pH 1 and 14 and in a wide range of solvents,[27,46,47] as the 

column packing. The findings will also be examined with respect to the role of the mobile 

phase pH on the retention mechanism. 

 

EXPERIMENTAL 

2.1. Chemicals and Reagents 

The seven triazines, their abbreviations, and numeric labels are given in Table 1; all 

were purchased as the Triazine Neat Kit (49092) from Supelco (Bellefonte, PA, USA). The 

compounds were dissolved in methanol (HPLC-grade, Fisher, Pittsburgh, PA, USA) to a 

final concentration of 25 μM. Acetonitrile (HPLC-grade, Fisher) and deionized water 

(MilliPore Milli-Q system, 18Ω, Billerica, MA, USA), along with lithium perchlorate 

(Sigma-Aldrich, St. Louis, MO, USA), were used for all mobile phase preparations. In 

addition, 85% o-phosphoric acid (certified ACS, Fisher), glacial acetic acid (reagent grade, 

Fisher), sodium tetraborate decahydrate (ACS reagent, Sigma-Aldrich), and lithium 

hydroxide (reagent grade, Fisher) were employed to modify the pH of the mobile phase. 

Solutions of pH 4.00 (potassium hydrogen phthalate), 7.00 (potassium phosphate 

monobasic/sodium hydroxide), and 10.00 (potassium carbonate/potassium 

tetraborate/potassium hydroxide/disodium EDTA dihydrate) were acquired from Fisher. 

 

 

 



www.manaraa.com

 
119 

2.2. Mobile Phase Preparation 

A series of preliminary experiments were performed to determine the most effective 

isocratic mobile phase composition for these separations. Separations were carried out with 

60%, 70%, 80% or 90% acetonitrile in water as mobile phases. These results indicated that a 

70% acetonitrile and 30% water mixture was a reasonable starting point based on tradeoffs 

between the duration and efficiency of separation. Thus, the standard mobile phase was 

prepared by dissolving lithium perchlorate (for solution conductivity) in 300 mL deionized 

water/700 mL acetonitrile to yield a 0.1 M solution. Prior to use, all mobile phases were: (1) 

passed through a 0.5-μm glass fiber filter (GE-Osmonics, Minnetonka, MN, USA) to remove 

any particulates; and (2) degassed for 30 min with high purity helium. 

 Three 100 mM buffer solutions were used [48-51]; phosphate buffer for pH 2, acetate 

buffer for pH 3 and 4, and borate buffer for pH 9. These buffers were chosen due to their 

solubility in the mixed mobile phase and optical transparency above 220 nm.[52] First, 300 

mL of buffer in water was prepared, and small adjustments in pH were made by addition of 1 

M (aq) lithium hydroxide. This step was followed by addition of lithium perchlorate (10.6 g) 

and 700 mL of acetonitrile in order to match the standard mobile phase. 

Measurements of pH were made with a standard glass electrode and meter (Orion 

model 520 A pH meter, Boston, MA, USA) and calibrated using pH 4.00, 7.00, and 10.00 

standards. After calibration, the pH of the buffer in the initial 300 mL of water ( pHw
w , purely 

aqueous mobile phase and water standards), as well as after organic modifier (acetonitrile) 

and lithium perchlorate ( pHs
w , mobile-phase solvent relative to water standards), was 
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measured.[53] All pH values reported herein are as pHw
w , which is the most commonly used 

scale in the reverse phase HPLC literature.[48] 

  

2.3. EMLC Column 

The design of the EMLC column is shown in Figure 1, and the column construction 

has been detailed elsewhere.[16] In brief, 5-μm porous graphitic carbon (PGC, Thermo 

Hypersil, Runcorn, UK) is packed into a porous stainless steel (Mott Corp., Farmington, CT, 

USA) column (3.2 mm ID x 110 mm length) that has been lined with a Nafion (Perma Pure 

Inc., Toms River, NJ, USA) cation exchange membrane. The PGC stationary phase serves 

the working electrode (WE) while the Nafion tubing functions as the salt bridge to the 

external reservoir. This reservoir contains a silver/silver chloride (saturated sodium chloride) 

reference electrode, and all values of Eapp will be reported with respect to this reference. The 

Nafion membrane also electrically isolates the PGC and the porous stainless steel tube, which 

functions as a high surface area auxiliary electrode (AE). The connection to the WE is made 

through a stainless steel frit. The WE is, however, electronically isolated from the AE by a 

Kel-F ring that is inserted in a PEEK union and a PAT frit at the top of the column. 

 

2.4. Instrumentation 

The column was connected through standard, stainless steel endfittings to an Agilent 

Technologies (Palo Alto, CA, USA) model 1050 HPLC system, equipped with a solvent 

cabinet, autosampler, quaternary pumping system, and UV-Vis diode array detector. The 

samples were injected using a 5.0-µL loop, and elution profiles were monitored at 220, 230, 
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and 254 nm. The potential applied to the stationary phase was controlled with a Model 174A 

Polarographic Analyzer (Princeton Applied Research, Oak Ridge, TN, USA). 

 

2.5. Mode of Operation 

 The mobile phases were passed through the column at 0.4 mL/min until a constant 

baseline was reached after each change in mobile phase or Eapp. Duplicate injections were 

performed to assess the reproducibility of the separation. Individual analyte injections were 

used to determine the identity and elution times of each chromatographic band. Void time 

was determined by a methanol injection at each potential/mobile phase composition and was 

used for the calculation of the capacity factor (k’). To compensate for band tailing, retention 

times were determined from the first statistical moment analysis. In addition, resolution (Rs), 

as defined by the half-width peak method, with a value of 1.5 or greater is termed baseline 

resolution[54] and values between 1.0 and 1.5 are referred to as “effective resolution.”[26]  

 

RESULTS AND DISCUSSION 

3.1. Studies with pH Controlled Mobile Phases 

 As shown in Table 1, triazines can be protonated at the aromatic ring nitrogens. The 

acid strength of these compounds is strongly influenced by the substituents on the triazine 

ring: chlorotriazines have a pKa of ~2 and methoxy- and methylthiotriazines have a pKa of 

~4.[44,45,55,56] The differences in pKa values can be attributed to the high electronegativity 

of the chlorine group and resonance effects for the methoxy- and methylthiotriazines.[56] 

Since retention at PGC is manipulated by EMLC through a combination of donor-acceptor, 

dispersive, and solvophobic interactions,[13] this section of the paper examines the effects of 
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varying Eapp and changing the pH of the mobile phase on the separation of a seven-

component mixture.  

 

3.1.1. Mobile Phase pH of 2 

The results for the separation of the mixture with the pH 2 mobile phase (phosphate 

buffer, pHw
w =1.8) are presented in Figure 2. At the most positive value of Eapp (+400 mV), 

PZ, PY, and TY have overlapping elution profiles; AZ and AY have a similar problem. 

When moving to +200 mV, bands for all seven analytes become distinguishable, but the total 

time for separation is only marginally effected. By applying more negative potentials, the 

elution time of the methoxy- (PO) and methylthiotriazines (PY, TY and AY) become longer, 

whereas those of the chlorinated triazines (PZ, AZ, and SZ) are only marginally changed. 

Interestingly, the difference in the dependence of retention on Eapp causes a change in the 

elution order of the components in the mixture. 

 The results from this experiment are summarized in the top set of graphs of Figure 3 

in which the natural log of the capacity factor (ln k’) is plotted versus Eapp. Figure 3 also 

documents the sensitivity of retention (i.e., Δln k’/ΔEapp) for each compound. Qualitatively, 

the triazines with a pKa of ~4 should be protonated at pH 2, with AY, TY, PY, and PO then 

being positively charged. The elution times for these compounds should therefore increase as 

Eapp becomes more negative, reflecting the importance of electrostatic interactions on 

retention. This trend is observed in Figure 3. This behavior, however, is in contrast to that of 

the chlorotriazines (pKa ~2) which exist as a mixture with nearly equal proportions of their 

unprotonated and protonated conjugates. In this case, the retention of SZ, AZ, and PZ has 

smaller potential dependence. 
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3.1.2. Mobile Phase pH of 9 

 Next, the potential dependent retention of the triazines was evaluated at a mobile 

phase pH of 9 (borate buffer, pHw
w =9.2). At this pH, all the components of the mixture 

should be exhaustively deprontated and thus present as neutrals. The retention of the neutral 

molecules should then be governed mainly by interactions between the π-systems of the s-

triazine aromatic rings and the graphitic carbon stationary phase. Interestingly, the retention 

dependence on Eapp at pH 9 (bottom graph in Figure 3) is in stark contrast to that at pH 2. All 

seven compounds now undergo an increase in retention as Eapp moves to more positive 

values. 

There is another interesting point to draw from these data – the elution order of the 

analytes. As previously hypothesized,[13] neutral aromatic compounds interact with the 

carbonaceous stationary phase via an orientation that maximizes the π-system interactions. It 

then follows that triazine retention would be affected by any steric effects associated with 

bulky substituents. The plots at pH 9 are qualitatively consistent with this expectation in that 

shorter retention times are observed for the triazines with more bulky alkyl groups. In other 

words, PO, PZ, and PY elute first (R1=R2=isopropyl), followed by TY (R1=ethyl, R2=tert-

butyl), then AZ and AY (R1=ethyl, R2=isopropyl), and finally SZ (R1=R2=ethyl). 

 

3.1.3. Mobile Phase pH of 4 

 To further investigate the dependence of the EMLC separation on the acid-base 

chemistry of the triazines, the mobile phase was changed to pH 4 (acetate buffer, pHw
w = 

3.9). The results from this intermediate pH value are summarized by the middle set of plots 
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in Figure 3. In this scenario, the methylthiotriazines (AY, TY, and PY) should exist in a 

nearly equal distribution of their protonated and unprotonated forms. As found at pH 2, there 

is very little change in retention upon varying Eapp when the triazine exists in close to an 

equal proportion of its charged and neutral forms. PO, a methoxytriazine with pKa of 4.2, has 

a small, negatively valued sensitivity, which is qualitatively consistent with a slight excess of 

cations as opposed to the neutral form. For the chlorotriazines (SZ, AZ, PZ), which at pH 4 

should be present mainly in their unprotonated form, the sensitivity is slightly positive, with 

retention times tracking the π-interactions discussed in section 3.1.2. 

 The separations at this transitional pH, shown in Figure 4, also illustrate an unusual 

dependence on Eapp. As is evident, the methylthiotriazines (PY, TY, AY) remain at 

approximately the same elution time regardless of Eapp. However, as Eapp becomes more 

negative, the retention time of the chlorotriazines (PZ, AZ, SZ) decrease and that of the 

methoxytriazine (PO) increases. This “pulling apart” of the chromatogram leads to an 

effective resolution of the seven components at 0 mV. This phenomenon occurs because each 

analyte, as dictated by their equilibrium composition, respond differently to changes in Eapp. 

That is to say, the retention of PO will be manipulated mainly by electrostatics, the neutral 

compounds (PZ, AZ, SZ) will be governed by π-system interactions, and the equilibrium 

mixtures (PY, TY, AY) will be retained by the opposing competition of both types of 

interactions. This retention dependence is another of the unique features of EMLC as a 

separation technique, and we will look to take advantage of this effect in future work. 
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3.2. Effect of Acid-Base Equilibrium on k’ 

The acid-base equilibria of an analyte can affect k’ in a predictable manner.[57] In 

general, the equilibrium constant, Ka, for the mobile phase (m, solution concentrations) 

reactions in Table 1 between a triazine (Tr) and its corresponding cation (TrH+) can be 

expressed as 

[ ] [ ]
[ ]m

mm
a TrH

HTrK +

+

=       (1) 

For retention at the stationary phase (s, interfacial concentrations), the equilibrium between 

the active sites on the carbon surface [C]s and the two forms of the triazine can be written as: 

[ ]
[ ] [ ]sm

s
TrC CTr

TrCK −
=−       (2) 

[ ]
[ ] [ ]sm

s
TrHC CTrH

TrHCK +

+

−

−
=+      (3) 

where [C-Tr]s and [C-TrH+]s signify the reversible association between the neutral and 

protonated forms of the triazines, respectively, and PGC. These theoretical considerations 

neglect any acid-base chemistry for PGC.[46] The overall capacity factor can then be 

determined by the distribution of the analyte between the stationary and the mobile phases: 

[ ] [ ]
[ ] [ ]mm

ss

TrTrH
TrCTrHCk

+
−+−

= +

+

φ'      (4) 

where φ  is the phase ratio for the stationary and mobile phase volumes. By solving equations 

1-3 for [TrH+], [C-Tr], and [C-TrH+], respectively, and substituting these results into 

equation 4, the dependence of k’ on the acid-base chemistry can be written as: 
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This expression can be further refined by defining the capacity factors for the unprotonated 

( Trk ' ) and protonated ( +TrHk ' ) forms of the triazines through equations 2 and 3: 

[ ]
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Upon substitution of equations 6 and 7 into equation 5, we arrive at: 
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The two forms of equation 8 can therefore be used to qualitatively explain the 

dependencies observed in Figure 3. The results for AY, summarized in Figure 5, serve as an 

example. At pH 1.8, which is about two pH units less than the pKa, AY is cationic and 

therefore migrates largely via the +TrH
k '  term in Equation 8. As a consequence, as more 

negative values of Eapp are used, the cationic triazine is more strongly retained by PGC. Upon 

adjusting the pH to more basic values, the distribution of AY shifts towards its neutral form, 

and +TrHk '  contributes less to the overall capacity factor. This dependence was verified by 

adjusting the mobile phase pH from 1.8 to 2.6 (both pH<pKa), which decreases the 

importance of electrostatic interactions but increases the role of π-system interactions. 

Indeed, the separations at pH 2.6, as shown for AY in Figure 5, exhibited a less negative 
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slope. At pH 3.9, the two conditions essentially compete, and the overall capacity factor does 

not have a significant change with respect to the potential applied. 

At pH 9.2, all the analytes are neutral, and equation 8 is controlled by Trk ' . The 

positively sloped dependence of retention on Eapp is primarily due to interactions from the π-

system of the triazine ring and PGC. It is important to note, however, that the retention times, 

and thus ln k’, for the separations at different pH mobile phases cannot be directly compared 

because, as previous work has shown,[24,25] dissimilar electrolytes have varied elution 

strengths.  

Another interesting result can be developed by plotting the sensitivities from the data 

in Figure 3 versus the mobile phase pH. Figure 6 shows such a plot for AY. This graph 

illustrates via Equation 8 that the pKa of the molecule can be determined at the inflection 

point of curve to the sensitivities at each mobile phase pH. To obtain the inflection point, the 

best fit line for each retention regime (i.e., electrostatic domain at low pH and π-systems 

interactions at high pH) was determined and the intersection of these two lines was 

calculated. The intersection is at pH 3.4 pH indicates that the pKa is slightly lower than the 

published value of 4.05.[44] This analysis was also applied to the other triazines, with PO, 

PY, and TY having respective pKa values of 3.5, 3.3, and 3.3. These results are lower than 

the published pKa values, which we attribute to the presence of acetonitrile, a lower dielectric 

solvent than water, in the mobile phase.[46] We note that assessments for PZ, AZ, and SZ 

were not possible because the mobile phase solutions were not acidic enough to determine a 

transition. This result indicates that EMLC can also be used to determine fundamental 

properties of molecules, an avenue of exploration which in currently underway. 
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3.3 Rapid Separation of Triazines 

As a final set of experiments, the EMLC conditions were optimized and a rapid 

separation was performed under normal mobile phase conditions. As discussed previously, 

the retention of uncharged s-triazines is strongly affected by interactions between the π-

systems of the triazines and those of PGC. Representative chromatograms from the 

separation of the triazine mixture are presented in Figure 7. The open-circuit potential (OCP) 

for this column and mobile phase is +150 mV. When operating slight more positive than the 

OCP (+200 mV), two sets of analytes have overlapping elution profiles, and the separation 

requires 14 min. These results elucidate the challenge posed by the separation of these polar, 

structurally similar compounds.  

By taking advantage of the ability to manipulate the interactions between the column 

packing and analyte via changes in Eapp, elution times can be decreased, and, interestingly, 

the resolution of the separation can be improved due to altered selectivity at different 

potentials. This effect is in contrast to conventional LC in that a decrease in retention usually 

results in a loss of resolution. This advantage of EMLC provides improvements in both time 

and resolution in the separation of this mixture to the extent that at -600 mV near baseline 

resolution (Rs between 1.3 and 4.7 for adjacent bands) of the seven components solution 

occurs in under eight minutes. Recent examples using reverse phase packing, however, 

require roughly twice the time, with little improvement over the resolution seen at -600 

mV.[36,37,39] 
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CONCLUSIONS 

The separation and retention characteristics of the triazine molecules were found to be 

strongly influenced by mobile phase pH. Under pH control, the separation of the triazine 

analytes showed marked changes in their sensitivity toward Eapp that reflected the distribution 

of the conjugated acid-base forms of the compounds. We believe these results show that 

EMLC can not only be used to perform separations but also as a research tool to probe 

physical properties and processes. From the separation standpoint, near-baseline resolution of 

the seven triazines was realized in under eight minutes by taking advantage of the ability to 

manipulate Eapp. Further work to extend the use of pH in EMLC to other systems is currently 

being performed. Research is also underway to more fully understand the mechanisms that 

govern the retention of the triazine compounds, with the ultimate goal being to form a set of 

global pH/EMLC retention rules. 
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FIGURES 

Fig. 1. Schematic of EMLC column 
 
Table 1 
s-Triazine analyte names, acronyms, structures, and pKa values along with the corresponding 
equilibrium. 
 
Fig. 2. Separation of standard triazine mixture with mobile phase at pH 2 (phosphate buffer). 
Flow rate 0.4 mL/min with 0.1 M LiClO4, 70% acetonitrile, 30% water mobile phase. 
Potential applied versus Ag/AgCl sat’d NaCl with λdet at 220 nm. Analyte concentrations are 
25 μM with 5-μL injection volume. 
 
Fig. 3. Separation of standard triazine mixture with mobile phase at pH 2 (phosphate buffer), 
pH 4 (acetate buffer), and pH 9 (borate buffer). Experimental conditions same as Figure 2 
and N=3 for each data point. 
 
Fig. 4. Separation of standard triazine mixture with mobile phase at pH 4 (acetate buffer). 
Experimental conditions same as Figure 2 but λdet at 230 nm. 
 
Fig. 5. Effect of changing mobile phase pH on the retention of ametryn with the natural log 
of capacity factor versus applied potential for pH 1.8 (phosphate buffer), pH 2.6 and 3.9 
(acetate buffer), and pH 9.2 (borate buffer). Other conditions same as Figure 2. 
 
Fig. 6. Slope from natural log of capacity factor versus applied potential (Figure 5) for 
ametryn. Smooth curve through these points crosses x-axis at pH ~4.1. 
 
Fig. 7. Separation of standard triazine mixture with no pH control. Experimental conditions 
same as Figure 2. Elution order for separations at Eapp of -200 through -600 mV is: PO, PZ, 
PY, TY, AZ, AY, and SZ. 
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Table 1 
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Fig. 2. 
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Fig. 3. 
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Fig. 4. 
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Fig. 5. 
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Fig. 6. 
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Fig. 7. 
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CHAPTER 6: Conclusions 

This dissertation focused on research aimed at advancing two analytical techniques. 

Chapter 1 gave a general introduction to detection techniques for bacteria as well as an 

overview of Raman spectroscopy and instrumentation. Work to improve heterogeneous 

immunoassays that rely on surface-enhanced Raman scattering (SERS) readout was the focus 

of Chapters 2-4 while electrochemically modulated liquid chromatography (EMLC) method 

development and applications were investigated in Chapter 5 and the Appendix. 

Advances in SERS readout immunoassays. The first body of work focused on the 

modification of a SERS-based sandwich immunoassay, previously developed in our group, in 

order to detect Mycobacterium avium subspecies paratuberculosis (MAP). This bacterium is 

the etiological agent of Johne’s disease and is responsible for large economic losses in the 

cattle industry. Current diagnostic measures, however, do not adequately detect the bacteria 

and many are not readily field deployable, and thus timely implementation of counteractions 

to control the spread of disease is not possible. To improve upon current transduction 

methods, a SERS readout assay for the detection of MAP was developed and discussed in 

Chapters 2 and 3.  

Chapter 2 focused on optimizing the current immunoassay with attention on antibody 

selection and blocking buffer conditions. Results for the K-10 MAP sonicate showed levels 

of detection (LOD) on the order of 1500 ng/mL which translated to ~750 MAP/mL. This 

assay was extended to the corresponding heat-killed, whole cell bacteria in Chapter 3 and had 

a LOD of ~500 MAP/mL. An interesting discovery revealed during the course of this 

investigation was the possibility of protein shedding from the surface of a bacterium cell. 

When viewed as an internal amplification mechanism, this development holds the potential 
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for improvements in LODs in other bacterial assays. The limits of detection achieved by 

these sensors, as well as the specificity and quantitative nature of the method, will allow for 

earlier diagnosis of infection and enhanced tracking of disease progression. 

As a pathway to achieving improved limits of detection, methods to increase the 

signal intensity from our extrinsic Raman labels (ERLs) were investigated in Chapter 4. 

Research has shown that when a molecule has an electronic band in tune with the excitation 

laser wavelength, the scattering probability is increased and thus the Raman signal intensity 

also increases. Based on this, research was conducted on incorporating commercially 

available dyes (resonant molecules) into the ERLs. One of the major challenges in this work 

centered on maintaining the stability of the colloidal suspension during incorporation of the 

resonant molecules. Through adjusting the nanoparticle labeling protocol, a stable colloidal 

suspension was achieved. When the new ERLs were used in the SERS readout immunoassay, 

signals for the resonant Raman labels were ~300 times more intense than their nonresonant 

counterpart. However, improved limits of detection were not realized in this study, as the 

blank signals used to calculate the LOD were dominated by nonspecific binding. 

Investigations of EMLC mobile and stationary phases. The second portion of this 

dissertation described advances made to EMLC. This analytical tool combines liquid 

chromatographic methods with potential control of the stationary phase. To further advance 

this technique, methods to implement pH modified mobile phases into EMLC were discussed 

in Chapter 5. By performing separations under different pH conditions, changes in elution 

order could possibly be achieved. To investigate this, seven triazine herbicides that are 

potentially hazardous to humans and the environment were utilized, as the pKa values of 

these molecules are dominated by their individual substituents. As such, this class of 
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compounds was used to model pH control in EMLC, and equilibrium considerations were 

discussed. An interesting outcome of this research was the elucidation of “pulling apart” a 

chromatogram. That is to say, when potential was changed two previously coeluting 

compounds could be separated as one analyte had a decrease and one had an increase in 

elution time. This unique aspect of EMLC could allow for improved separations of 

structurally similar compounds. 

Finally, the Appendix briefly discussed the integration of novel, monolithic stationary 

phases into EMLC. The column was redesigned and preliminary studies were performed with 

porous, rod-like stationary phases. While these investigations did not lead to improvements 

in the current system, the results have allowed a redirection in the focus of EMLC column 

construction and synthesis of monolithic phases for EMLC. 
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APPENDIX. Monolithic Carbon as a Novel Stationary Phase for 

Electrochemically Modulated Liquid Chromatography 

Betsy Jean Yakes and Marc D. Porter 
 
 

INTRODUCTION 

Stationary phase development in liquid chromatography is essential for improvements 

in chromatographic performance. Traditional, particulate packed phases are limited by large 

void volumes, slow mass transfer of large molecules, or high back pressure.1 To improve 

upon these limitations, an exciting new area of study focuses on transitioning from slurry 

packed materials to contiguous foam-like phases.2 While multiple names exist to describe 

these materials, the term monolith, stemming from the Greek μονολιτηοσ for single (μονο) 

stone (λιτηοσ), has become the most widely accepted.3 The fused design of these materials 

yields both high permeability and high efficiency while also having low resistance to fluid 

flow. An additional attribute, which could be advantageous with electrochemically 

modulated liquid chromatography (EMLC), is that monolithic phases may lead to a lower 

solution resistance and, with more consistent pore size, more uniform resistance across the 

column. 

Monoliths are generally classified as polymer- or silica-based and are further grouped 

by the derivatives used during synthesis or any subsequent surface modification. There are a 

diversity of pathways for the preparation of these phases with hydrogels, polyurethane foams, 

compressed beads, thin disks, and rigid columns being the most popular formats.3 Unlike 

polymer- and silica-based materials, purely carbon monolithic stationary phases (i.e., 

monolithic carbon, MC) have been introduced only recently. These monoliths are generally 
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synthesized by using a silica template and a carbon precursor.4-8 After the precursor is 

carbonized under non-oxidizing conditions, the silica framework is dissolved. Since the 

shape of the MC is based solely upon the silica template and the surrounding support, the rod 

length, width, shape, and internal pore diameter can be tailored to suit many column designs. 

One such carbon monolith by Guiochon and coworkers is formed through high-temperature 

graphitization of a phenolic resin rod with embedded sacrificial silica beads. The resulting 

porous rod consists of a bridged framework of highly ordered carbon with both micro- and 

mesopores.5 With the goal of exploring the benefits of MC, we investigated this and similar 

monolithic columns, in collaboration with Guiochon and coworkers, with our EMLC system.  

EMLC, as introduced in Chapter 5, is a unique combination of liquid chromatography 

and electrochemistry. In EMLC, analyte retention is manipulated by changing the potential 

applied (Eapp) to a conductive stationary phase such as porous graphitic carbon (PGC). While 

MC is a conductive material like PGC, its structure provides a packing with more regular 

channels than slurry packed columns, yielding a lower level of axial dispersion and 

potentially improved separations. The focus of this appendix is on attempts to assess the 

potential of these MC stationary phases in EMLC. This report is intended to serve as a record 

of the research, with experimental conditions and prospective studies as guidelines for future 

investigations. 

 

GLASSY CARBON PARTICULATE ROD 

 Our first attempt at incorporating monoliths as stationary phases used a preformed 

particulate rod synthesized through phase separation procedures. This fused material was 

similar to, but easier to synthesize than, a skeletal monolithic rod and functioned as a good 



www.manaraa.com

 
146 

mechanical model for use in redesigning the column. SEM images of this rod, shown in 

Figure 1, indicated that the material was composed of clusters of ~1-μm beads that were 

stacked together. These rods were composed of ungraphitized, glassy carbon and had a 

surface area of ~200 m2/g, determined by BET measurements (C. Liang and S. Dai, Oak 

Ridge National Laboratory). In addition, their studies showed chromatographic performance 

with this material was poor due to micropores in the particle surface (unpublished data). To 

improve performance, the number of micropores can be decreased through graphitization or 

surface modification. For the scope of this investigation, this rod was used as a model for 

redesigning the column; however, since the material was not capped, the rod was not 

extensively used for separations. 

  

REDESIGNED EMLC COLUMN 

 The standard EMLC column and HPLC instrumentation have been detailed in 

Chapter 5. This basic column9 format, having been optimized for slurry packing particulate 

stationary phases, required redesign for incorporation of the MC rods. In the traditional 

EMLC column, a stationary phase is packed into a porous stainless steel column housing that 

 
 
Figure 1. Glassy carbon rod SEM images. 
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has been lined with a Nafion cation exchange membrane. The conductive stationary phase 

serves as the working electrode (WE), while the Nafion tubing functions as the salt bridge 

and electronic insulator between the working and auxiliary electrodes. The porous stainless 

steel provides the structural support for the column and provides the high surface area 

auxiliary electrode (AE). To complete the three electrode electrochemical cell, a silver/silver 

chloride (saturated sodium chloride) reference electrode (RE) is placed in an external 

electrolyte reservoir. This setup of building the column from the outside-in, however, was not 

readily amenable to use with preformed rods. As such, the standard EMLC column needed to 

be rebuilt from the inside-out. Throughout the alteration process, efforts were made to ensure 

the column housing remained as close as possible to the traditional setup so that comparisons 

between the monolithic phases and PGC could be made. 

The first step in modifying the column 

was machining the stainless steel housing. In this 

case, the rods encapsulated with Nafion were a 

larger diameter (~3.8 mm) than the column body 

(3.2-mm internal diameter, i.d.), so the stainless 

steel was bored out to a ~3.9-mm i.d. with the 

11-cm length maintained. Next, one end of the 

Nafion tubing that encases the stationary phase 

was flanged. After flanging, a wooden rod was 

inserted into the tubing, and the Nafion tubing was completely immersed in isopropanol. This 

process maintained the shape of the tubing while swelling the polymer to make it more 

pliable. Once this occurred, the wooden rods were removed, and the monolithic rod was 

 
 
Figure 2. Modified EMLC column 
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inserted into the Nafion tubing. This procedure was done by manually sliding/twisting 

Nafion tubing over the rod while continuously wetting the Nafion/rod structure with 

isopropanol to decrease friction. During this process, special care was taken to ensure the 

Nafion tubing did not wrinkle and that the flange was not distorted. When the top of the rod 

was flush with the flange, the assembly was dried (2 h, room temperature), placed in the 

column body, and the nonflanged end of the Nafion/rod cut flush with the end of the column. 

To form a seal at the bottom of the column, a flange was formed from heat-shrink Teflon, 

inserted between the Nafion tubing and stainless steel, and then heated to form a seal. The 

finalized column, shown schematically in Figure 2, was fitted with standard frits and end 

fittings and attached to the HPLC instrumentation and potentiostat as described in Chapter 5. 

Results from experiments with this rod indicated that the material was a poor 

chromatographic stationary phase as 

expected based on the unblocked 

micropores. When using a 100 mM 

lithium perchlorate, 95% water, 5% 

acetonitrile mobile phase at a flow rate 

of 1.0 mL/min, the backpressure was 

only 30 bar. In addition, injections of 

acetonitrile and benzene sulfonate had 

the same elution times as shown in Figure 3. These results indicated that the analytes did not 

sufficiently interact with stationary phase. Based on this, further separations were not 

performed with this material. However, the EMLC column modification did allow for 

incorporation of the rod, so skeletal monoliths were tested next. 

 
 

Figure 3. Experiments with glassy carbon rod. 
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MONOLITHIC CARBON  

The MC rod used for separation studies is shown in the SEM images in Figure 4. 

SEM images illustrated the skeletal structure (Figure 4a and 4c) as well as the mesoporous 

features observed with a lower accelerating voltage (Figure 4b). Characterization of this 

material by Raman spectroscopy (Figure 4d) gave two broad bands. The lower energy band 

is attributed to carbon disorder and is characteristic of nongraphitic carbon; however, the 

presence of the E2g breathing mode at 1526 cm-1 indicates a degree of microcrystallinity.10 

This conductive material was inserted into the redesigned EMLC column and separations 

were performed with a mixture of aromatic sulfonates. As shown in Figure 5a, the analytes 

had no detectable retention and appeared to coelute with the void volume. In addition, at the 

flow rate of 1 mL/min, the back pressure was only 45 bar, and the void volume was 

calculated to be ~0.3 mL. This situation may reflect gaps between the Nafion and stationary 

phase, creating a low resistance flow path for the mobile phase that would allow the analyte 

to flow past the stationary phase. In addition, this material was nongraphitized and contained 

micropores similar to the glassy carbon, particulate rod. As mentioned above, these 

micropores lead to poor chromatographic efficiency but can be capped by either 

graphitization or surface modification; however, these procedures were not preformed within 

the scope of this investigation. 
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Another possible explanation of the lack of retention is the complete adsorption of the 

analytes to the stationary phase. To test this hypothesis, experiments were performed with 

varying concentrations of benzene sulfonate. The only elution band found was at the void 

volume. In addition, as shown in Figure 5b, the area under the elution band tracked linearly 

with the benzene sulfonate concentration, supporting the premise of the analyte eluting in the 

void band. This result points to either gaps between the stationary phase and Nafion/column 

housing and/or the existence of micropores as the complication. The presence of gaps has 

been the primary challenge in integrating monolithic materials into chromatography, but 

could be overcome by monolith formation in-situ and the subsequent covalent bonding of the 

monolith to the support (e.g., column housing).11 For the possibility of micropores hindering 

 
Figure 4. SEM images and Raman spectrum of nongraphitic, monolithic carbon rod. 
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retention, this would be best overcome by graphitizing the carbon surface, as surface 

modification could interfere with the conductivity of the carbon surface. 

 

FUTURE DIRECTIONS 

 As these initial studies show, redesigning our traditional EMLC column to 

incorporate rod stationary phases did not readily result in a functioning chromatographic 

system. The main challenges to this approach included chipping or cracking the rod during 

insertion into the Nafion tubing and ensuring that there were no gaps between the monolith 

and Nafion membrane. There are two avenues to potentially mitigate these difficulties. The 

first path addresses a dramatic column redesign that would not only allow simpler 

encapsulation, versus insertion, of preformed stationary phases but also include a completely 

enclosed electrolyte reservoir. The self-contained electrolyte reservoir will also enable easier 

column integration (e.g., incorporation into standard HPLC column compartments) and use 

in high temperature environments with limited evaporation of electrolyte. The second area 

takes advantage of monolith stationary phase formation and will focus on developing 

 
Figure 5: (a) Separation with a mixture of benzene sulfonate (BS), methyl- (MBS), 
chloro-BS (CBS), and hydroxy-BS (HBS), each 20 μM. (b) BS injects at varying 
concentrations and corresponding peak area at ~0.3 min (other conditions in a). 
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methods for synthesizing carbon monoliths within the Nafion, or similar, encasings. Such an 

approach would potentially avoid the formation of gaps possibly encountered during this 

study. In addition, since micropores may have limited the chromatographic ability of the rods 

used herein, the next generation of monolithic materials should be graphitized. 
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